Epoxy composites filled with boric acid and natural zeolite with different percentage (1, 5, and 10 wt%) were prepared. Hexamethylenediamine and polyethylenpolyamine were used as curing agents. The prepared samples and starting materials were examined using the methods of thermal analysis and scanning electron microscopy. The parameters of thermal decomposition in argon were analyzed. The limiting oxygen index was calculated in accordance with Van Krevelen and Hoftyzer equation. The thermal characteristics of the studied composites depend on the filler content. The results showed that the incorporation of 10 wt% fillers both boric acid and natural zeolite significantly improved the thermal properties of the obtained composites.
Epoxy composites filled with 0.5 wt% of multi-walled carbon nanotubes (MWCNTs), 10 and 15 wt% of boric acid and sodium bicarbonate separately, as well as composites filled with a combination of MWCNTs-boric acid and MWCNTs-sodium bicarbonate were prepared. The thermal behavior of the prepared samples was investigated under heating in oxidative environment using thermogravimetric analysis. The hardness was measured using the Shore D hardness test. To evaluate the flammability of the samples, the ignition temperature and time-to-ignition were determined. It was concluded that sodium bicarbonate in the studied concentrations (10 and 15 wt%) is not appropriate for use as a filler capable of improving the thermooxidative stability and reducing the flammability of epoxy polymers. The improvement in the thermal properties can be achieved by using the combination of boric acid and multi-walled carbon nanotubes as fillers. The thermooxidative destruction of the samples filled with boric acid passes more slowly and more evenly via the formation of B2O3 as a result of its decomposition.
Abstract. The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products.
Reduction of flammability and improvement of thermal stability of polymers during heating can be achieved by the introduction of fillers. Epoxy composites filled with different loadings of multi-walled carbon nanotubes (MWCNTs) and expanded graphite (EG) were prepared. The thermal oxidation stability of the prepared samples was investigated under heating in an oxidizing atmosphere using thermal analysis. The hardness was measured using the Shore D hardness test. The flammability of the prepared composites was evaluated by the ignition temperature and time-to-ignition. It was found that there was a rise in temperature corresponding to a 5% weight loss during heating for both epoxy/MWCNT and epoxy/EG composites compared to neat epoxy resin. The Shore D hardness of epoxy/MWCNT composites increased with content growth up to 0.1 wt.% and decreased with further concentration rise. The addition of MWCNTs and EG leads to an increase in the ignition temperature. It has been shown that MWCNTs improve the thermal behavior of epoxy resin in a low temperature region (below ~ 300 °C) whereas EG shows almost the same thermal behavior above 300 °C. The improvement of thermal properties can be achieved using MWCNTs and EG as fillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.