Pollinator specificity has traditionally been considered the main reproductive isolation mechanism in orchids. Among Mediterranean orchids, however, many species attract and deceive pollinators by mimicking nectar-rewarding plants. To test the extent to which deceptive orchid species share pollinators, we collected and identified hemipollinaria-carrying insects, and used ribosomal sequences to identify the orchid species from which hemipollinaria were removed. We found that social and solitary bees, and also flies, carried hemipollinaria belonging to nine orchid species with different degrees of specialization. In particular, Anacamptis morio, Dactylorhiza romana and Orchis mascula used a large set of pollinator species, whereas others such as Orchis quadripunctata seemed to be pollinated by one pollinator species only. Out of the insects with hemipollinaria, 19% were found to carry hemipollinaria from more than one orchid species, indicating that sympatric food-deceptive orchids can share pollinators. This sharing was apparent even among orchid sister-species, thus revealing an effective overlap in pollinator sets among closely related species. These results suggest varying degrees of pollinator specificity in these orchids, and indicate that pollinator specificity cannot always act as the main isolation mechanism in food-deceptive temperate orchids.
BackgroundDrinking tea constitutes a tradition which is deeply rooted in the culture of several countries. Moreover, in recent years, tea consumption is growing all over the world. Improper herbal tea storage (long periods, humid environments) represents a relevant health hazard for consumers because of the growth of bacteria and molds.ResultsThis study analyzed 32 samples of commercially available black and green teas – purchased from southern Italy markets and online-shops – and the monitoring of microbiological quality of the tea bag content was performed. Evaluations were conducted with the aim of characterizing pathogens indicated by the European and American guidelines (total bacterial count, fungi and Escherichia coli) and on the research of Pseudomonas spp. and Clostridium perfringens. The presence of ochratoxin A in tea matrix-leaves and infusions was further assessed, using a validated and accredited HPLC-FLD method. Microbial loads, for over 80% samples, ranged from 1.0 × 102 to 2.8 × 105 CFU/g tea: most of identified microorganisms were classified as Bacillaceae. The utilization of rapid detection and identification methods (PCR and sequencing), allowed the characterization of strains of Pseudomonas psychrotolerans, Staphylococcus warneri, Pantoea gaviniae and the isolation of one strain of Clostridium perfringens, whose ability to produce toxins can result in harmful outcomes for consumers. Fungi were isolated from 70% samples: the most prevalent molds were Aspergillus niger strains, followed by Aspergillus tubingensis. Ochratoxin A was detected in 22 of 32 tea solid samples investigated: concentrations resulted over the indicated limits for food products for 50% samples.ConclusionsResults obtained demonstrated the need to develop targeted regulations for the safety of herbal teas.
The molecular analysis provides novel insights into the evolutionary history of C. esculentus. The results have various taxonomic and phylogenetic implications, including a hypothesis on the origin and phylogeography of this species, which probably originated in the late Cenozoic in Africa, and reached the Americas repeatedly, independently of Columbian exchanges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.