This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
This review presents some of the hottest topics in biotechnological applications: proteases in biocatalysis. Obviously, one of the most relevant areas of application is in the hydrolysis of proteins in food technology, and that has led to a massive use on proteomics. The aim is to identify via peptide maps the different proteins obtained after a specific protease hydrolysis. However, concepts like degradomics are also taking on a more relevant importance in the use and study of proteases and will also be discussed. Other protease applications, as seem in cleaning (detergent development), the pharmaceutical industry, and in fine chemistry, will be analyzed. This review progresses from basic areas such as protease classification to a discussion of the preparation of protease-immobilized biocatalysts, considering the different problems raised by the use of immobilized proteases due to the peculiar features of the substrates, usually large macromolecules. Production of bioactive peptides via limited hydrolysis of proteins will occupy an important place in this review.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Seven different in vitro methods to determine the protein digestibility for chickpea proteins were considered and also the application of these methodologies for calculating PDCAAS (protein digestibility-corrected amino acid score), seeking their correlations with the in vivo methodology. In vitro digestibility of raw and heated samples were determined using pepsin-pancreatin hydrolysis, considering soluble nitrogen via Kjeldahl (ppKJ) and hydrolysed peptide linkages using trinitrobenzenesulfonic acid and o-phthaldialdehyde. In vitro digestibility was also determined using trypsin, chymotrypsin and peptidase (3-Enz) or trypsin, chymotrypsin, peptidase and pronase solution (4-Enz). None of the correlations between in vitro and in vivo digestibilities were significant (at p<0.0500), but, strong correlations were observed between PDCAAS calculated by in vitro and in vivo results. PDCAAS-ppKJ, PDCAAS-3-Enz and PDCAAS-4-Enz presented the highest correlations with in vivo method, r=0.9316, 0.9442 and 0.9649 (p<0.0500), respectively. The use of in vitro methods for calculating PDCAAS may be promising and deserves more discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.