Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200-300. Catalytic activity critically depends on the presence of the allosteric activator cyclicdi-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP. membrane transport | biopolymer | glycobiology | in vitro reconstitution
Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear -1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo--1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an (␣/␣) 6 -barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades -1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.Cellulose, one of the most abundant biopolymers in nature, is produced by most vascular plants and a large number of algae, but is also found in some bacteria and even tunicates (1, 2). The cellulose microfibril consists of linear chains of glucose molecules that are linked via -1,4-glycosidic bonds (-1,4-glucan) and are bundled together to form cable-like structures outside the cell (3, 4). A key enzyme in the biosynthesis of cellulose is the membrane-embedded cellulose synthase, which catalyzes the polymerization of UDP-activated glucose molecules (5, 6) and, presumably, also the translocation of the growing polysaccharide across the cell membrane (7). The bacterial cellulose synthase (Bcs) 2 complex is predicted to form a trans-envelope secretion system comprising at least four subunits (6). Although the BcsA, -B, and -C subunits are involved in synthesizing and translocating the -1,4-glucan across the inner and the outer membrane, the fourth subunit, BcsZ, is a periplasmic protein with endo--1,4-glucanase activity (8).BcsZ belongs to family 8 of glycoside hydrolases (GH-8) that adopts an (␣/␣) 6 -barrel architecture, consisting of two rings of six parallel ␣-helices with opposing orientation in both rings (9). GH-8 enzymes hydrolyze glycosidic bonds with a pair of acidic residues in a reaction that inverts the anomeric configuration at the new reducing end...
Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1(BN) congenic strain. However, the mechanisms involved remain to be determined. The present study examined the role of the large conductance calcium-activated potassium (BK) channel in impairing the MR in FHH rats. Whole-cell patch-clamp studies of cerebral vascular smooth muscle cells (VSMCs) revealed that iberiotoxin (IBTX; BK inhibitor)-sensitive outward potassium (K+) channel current densities are four- to fivefold greater in FHH than in FHH.1(BN) congenic strain. Inside-out patches indicated that the BK channel open probability (NPo) is 10-fold higher and IBTX reduced NPo to a greater extent in VSMCs isolated from FHH than in FHH.1(BN) rats. Voltage sensitivity of the BK channel is enhanced in FHH as compared with FHH.1(BN) rats. The frequency and amplitude of spontaneous transient outward currents are significantly greater in VSMCs isolated from FHH than in FHH.1(BN) rats. However, the expression of the BK-α and -β-subunit proteins in cerebral vessels as determined by Western blot is similar between the two groups. Middle cerebral arteries (MCAs) isolated from FHH rats exhibited an impaired MR, and administration of IBTX restored this response. These results indicate that there is a gene on RNO1 that impairs MR in the MCAs of FHH rats by enhancing BK channel activity.
Вищий державний навчальний заклад України «Буковинський державний медичний університет», м. Чернівці Резюме. Під нашим спостереженням на лікуванні в ЛОР-відділенні Обласної клінічної лікарні знаходилось 98 хворих віком від 19 до 42 років. У 78 з них встановлено діагноз хронічний гнійний верхньощелепний синусит (ХГВС) із цукровим діабетом (ЦД) 1-го типу в стадії загострення (основна група), у 20 -загострення хронічного гнійного верхньощелепного синуситу без супутньої патології (контрольна група). Всім пацієнтам проведено стандартне отоларингологічне обстеження, рентгенографію та комп'ютерну томографію (КТ) приносових пазух, загальний аналіз крові та сечі, аналіз крові для спектрофотометричного визначення молекул середньої маси (МСМ). Реактивну відповідь визначали за показниками інтоксикації.Верифікацію діагнозу ЦД ендокринологи здійснювали на підставі поглибленого клініко-анамнестичного та лабораторно-інструментального досліджень. Встановлено, що у всіх досліджуваних пацієнтів перебіг захворювання розгортався на фоні підвищеного вмісту в крові глікозильованого гемоглобіну HbA lС (10±0,92 %), що дозволило засвідчити неадекватний контроль глікемії (погану компенсацію діабету) в обстеженої когорти осіб.Для оцінки адаптаційного і загального реактивного потенціалу хворих на ХГВС із ЦД 1-го типу використані інтегральні імуногематологічні індекси, що розра-
Резюме. Вступ. Цукровий діабет (ЦД) 1-го типу призводить до розвитку та несприятливого клінічного пере-бігу хронічних запальних захворювань, у тому числі і лор-органів. ВступДисбіоз кишечника -це клініко-лабораторний синдром, в основі якого є зміни якісного і кількісного складу мікрофлори кишечника з розвитком метабо-лічних та імунологічних зрушень, які на тлі цукрового діабету (ЦД) 1-го типу призводять до виникнення, роз-витку та несприятливого клінічного перебігу більшості захворювань, у тому числі і лор-органів [2,5,6].Слизова оболонка верхніх дихальних шляхів є пер-шим захисним бар'єром між навколишнім і внутріш-нім середовищем людини. Її стан разом з функціональ-ною спроможністю слизової оболонки товстої кишки визначають ризик виникнення захворювань як лор-органів, так і організму загалом. Чинники місцевого імунітету та стан мікробіоти товстого кишечника при запальних захворюваннях верхніх дихальних шляхів на тлі ЦД 1-го типу вивчені недостатньо [1].Адреси для листування з авторами: Мазур Ольга Олександрівна
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.