Summary The chemosensitising effects of poly(ethylene oxide)-poly(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronic) in multidrug-resistant cancer cells has been described recently (Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV 1996, Biocon. Chem., 7, 209). This paper presents initial studies on in vivo evaluation of Pluronic copolymers in the treatment of cancer. The anti-tumour activity of epirubicin (EPI) and doxorubicin (DOX), solubilised in micelles of Pluronic L61, P85 and F108, was investigated using murine leukaemia P388 and daunorubicin-sensitive Sp2/0 and -resistant Sp2/0DNR myeloma cells grown subcutaneously (s.c.). The study revealed that the lifespan of the animals and inhibition of tumour growth were considerably increased in mice treated with drug/copolymer compositions compared with animals treated with the free drugs. The anti-tumour activity of the drug/copolymer compositions depends on the concentration of the copolymer and its hydrophobicity, as determined by the ratio of the lengths of hydrophilic PEO and hydrophobic PPO segments. The data suggest that higher activity is associated with more hydrophobic copolymers. In particular, a significant increase in lifespan (TIC> 150%) and tumour growth inhibition (>90%) was observed in animals with Sp2/0 tumours with EPI/P85 and DOX/L61 compositions. The effective doses of these compositions caused inhibition of Sp2/0 tumour growth and complete disappearance of tumour in 33-50% of animals. Future studies will focus on the evaluation of the activity of Pluronic-based compositions against human drug-resistant tumours.
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion–mainly to East Europe and the northern Balkans–resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.