Replication-deficient human adenovirus type 5 (Ad5) can be produced to high titers in complementing cell lines, such as PER.C6, and is widely used as a vaccine and gene therapy vector. However, preexisting immunity against Ad5 hampers consistency of gene transfer, immunological responses, and vector-mediated toxicities. We report the identification of human Ad35 as a virus with low global prevalence and the generation of an Ad35 vector plasmid system for easy insertion of heterologous genes. In addition, we have identified the minimal sequence of the Ad35-E1B region (molecular weight, 55,000 [55K]), pivotal for complementation of fully E1-lacking Ad35 vector on PER.C6 cells. After stable insertion of the 55K sequence into PER.C6 cells a cell line was obtained (PER.C6/55K) that efficiently transcomplements both Ad5 and Ad35 vectors. We further demonstrate that transduction with Ad35 is not hampered by preexisting Ad5 immunity and that Ad35 efficiently infects dendritic cells, smooth muscle cells, and synoviocytes, in contrast to Ad5.It has been shown in diverse in vivo models that recombinant adenovirus type 5 (Ad5) has potential as a vehicle to transfer genes for treatment or prevention of disease (49, 52). Although encouraging, the extrapolation from animal models to humans faces at least one extra hurdle, i.e., the presence of anti-Ad5 neutralizing activity (NA) in sera from human individuals. The humoral response to Ad5 is strong and has been found to impede, depending on the administration route, the infection efficiency in animal models as well as in humans (7,9,18,29,30,35,37,42,45). Concomitant with the decrease in transduction, high NA against the vector also abolishes Ad5-mediated toxicity (8). Importantly, when very high vector doses were used in preimmunized nonhuman primates, new toxic effects were found that were not observed in naive animals (54). These findings show that preexisting immunity severely hampers accurate dose control, since human individuals differ in their NA against Ad5-based vectors. Strategies to bypass NA to Ad5 viruses include switching of adenovirus type (28,32,36) and use of animal adenoviruses (13,25,34). Animal adenoviruses have the advantage that NA is predicted to be absent in humans. Disadvantages of this strategy include the lack of knowledge regarding the biology of these viruses including tropism on human cells, potential difficulties in manufacturing, and the possibility of in vivo recombination with human types leading to unknown disease. Human adenoviruses on the other hand are better characterized and their subclinical disease association in humans is known (10,17,55). However, recent knowledge on the prevalence of NA towards human adenoviruses worldwide is not available and therefore it is difficult to predict which type would be the best alternative for Ad5. To identify human adenovirus types with low seroprevalence, an extensive screen was performed using most human adenovirus types and serum samples derived from healthy blood donors from 6 different geographica...
Since targeting of recombinant adenovirus vectors to defined cell types in vivo is a major challenge in gene therapy and vaccinology, we explored the natural diversity in human adenovirus tissue tropism. Hereto, we constructed a library of Ad5 vectors carrying fibers from other human serotypes. From this library, we identified vectors that efficiently infect human cells that are important for diverse gene therapy approaches and for induction of immunity. For several medical applications (prenatal diagnosis, artificial bone, vaccination, and cardiovascular disease), we demonstrate the applicability of these novel vectors. In addition, screening cell types derived from different species revealed that cellular receptors for human subgroup B adenoviruses are not conserved between rodents and primates. These results provide a rationale for utilizing elements of human adenovirus serotypes to generate chimeric vectors that improve our knowledge concerning adenovirus biology and widen the therapeutic window for vaccination and many different gene transfer applications.
Given the promise of recombinant adenovirus type 5 (rAd5) as a malaria vaccine carrier in preclinical models, we evaluated the potency of rAd35 coding for Plasmodium yoelii circumsporozoite protein (rAd35PyCS). We chose rAd35 since a survey with serum samples from African subjects demonstrated that human Ad35 has a much lower seroprevalence of 20% and a much lower geometric mean neutralizing antibody titer (GMT) of 48 compared to Ad5 (seroprevalence, 85%; GMT, 1,261) in countries with a high malaria incidence. We also demonstrated that immunization with rAd35PyCS induced a dose-dependent and potent, CS-specific CD8 ؉ cellular and humoral immune response and conferred significant inhibition (92 to 94%) of liver infection upon high-dose sporozoite challenge. Furthermore, we showed that in mice carrying neutralizing antibody activity against Ad5, mimicking a human situation, CS-specific T-and B-cell responses were significantly dampened after rAd5PyCS vaccination, resulting in loss of inhibition of liver infection upon sporozoite challenge. In contrast, rAd35 vaccine was as potent in naive mice as in Ad5-preimmunized mice. Finally, we showed that heterologous rAd35-rAd5 prime-boost regimens were more potent than rAd35-rAd35 because of induction of anti-Ad35 antibodies after rAd35 priming. The latter data provide a further rationale for developing rAd prime-boost regimens but indicate that priming and boosting Ad vectors must be immunologically distinct and also should be distinct from Ad5. Collectively, the data presented warrant further development of rAd35-based vaccines against human malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.