Spasticity is a symptom occurring in many neurological conditions including stroke, multiple sclerosis, hypoxic brain damage, traumatic brain injury, tumours and heredodegenerative diseases. It affects large numbers of patients and may cause major disability. So far, spasticity has merely been described as part of the upper motor neurone syndrome or defined in a narrowed neurophysiological sense. This consensus organised by IAB-Interdisciplinary Working Group Movement Disorders wants to provide a brief and practical new definition of spasticity-for the first time-based on its various forms of muscle hyperactivity as described in the current movement disorders terminology. We propose the following new definition system: Spasticity describes involuntary muscle hyperactivity in the presence of central paresis. The involuntary muscle hyperactivity can consist of various forms of muscle hyperactivity: spasticity sensu strictu describes involuntary muscle hyperactivity triggered by rapid passive joint movements, rigidity involuntary muscle hyperactivity triggered by slow passive joint movements, dystonia spontaneous involuntary muscle hyperactivity and spasms complex involuntary movements usually triggered by sensory or acoustic stimuli. Spasticity can be described by a documentation system grouped along clinical picture (axis 1), aetiology (axis 2), localisation (axis 3) and additional central nervous system deficits (axis 4). Our new definition allows distinction of spasticity components accessible to BT therapy and those inaccessible. The documentation sheet presented provides essential information for planning of BT therapy.
Botulinum toxin (BT) therapy is a complex and highly individualised therapy defined by treatment algorithms and injection schemes describing its target muscles and their dosing. Various consensus guidelines have tried to standardise and to improve BT therapy. We wanted to update and improve consensus guidelines by: (1) Acknowledging recent advances of treatment algorithms. (2) Basing dosing tables on statistical analyses of real-life treatment data of 1831 BT injections in 36 different target muscles in 420 dystonia patients and 1593 BT injections in 31 different target muscles in 240 spasticity patients. (3) Providing more detailed dosing data including typical doses, dose variabilities, and dosing limits. (4) Including total doses and target muscle selections for typical clinical entities thus adapting dosing to different aetiologies and pathophysiologies. (5) In addition, providing a brief and concise review of the clinical entity treated together with general principles of its BT therapy. For this, we collaborated with IAB—Interdisciplinary Working Group for Movement Disorders which invited an international panel of experts for the support.
Botulinum toxin (BT) therapy is an established treatment of spasticity due to stroke. For multiple sclerosis (MS) spasticity this is not the case. IAB-Interdisciplinary Working Group for Movement Disorders formed a task force to explore the use of BT therapy for treatment of MS spasticity. A formalised PubMed literature search produced 55 publications (3 randomised controlled trials, 3 interventional studies, 11 observational studies, 2 case studies, 35 reviews, 1 guideline) all unanimously favouring the use of BT therapy for MS spasticity. There is no reason to believe that BT should be less effective and safe in MS spasticity than it is in stroke spasticity. Recommendations include an update of the current prevalence of MS spasticity and its clinical features according to classifications used in movement disorders. Immunological data on MS patients already treated should be analysed with respect to frequencies of MS relapses and BT antibody formation. Registration authorities should expand registration of BT therapy for spasticity regardless of its aetiology. MS specialists should consider BT therapy for symptomatic treatment of spasticity.
IncobotulinumtoxinA treatment resulted in significant improvements in facial symmetry in patients with facial nerve injury following neurosurgical interventions. Treatment was effective for the correction of the compensatory hyperactivity of mimic muscles on the unaffected side that develops in the acute period of facial nerve palsy, and for the correction of synkinesis in the affected side that develops in the long-term period. Appropriate dosing and patient education to perform exercises to restore mimic muscle function should be considered in multimodal treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.