Join order selection plays a significant role in query performance. However, modern query optimizers typically employ static join enumeration algorithms that do not receive any feedback about the quality of the resulting plan. Hence, optimizers often repeatedly choose the same bad plan, as they do not have a mechanism for "learning from their mistakes". In this paper, we argue that existing deep reinforcement learning techniques can be applied to address this challenge. These techniques, powered by artificial neural networks, can automatically improve decision making by incorporating feedback from their successes and failures. Towards this goal, we present ReJOIN, a proof-of-concept join enumerator, and present preliminary results indicating that ReJOIN can match or outperform the PostgreSQL optimizer in terms of plan quality and join enumeration efficiency.
Data exploration is about efficiently extracting knowledge from data even if we do not know exactly what we are looking for. In this tutorial, we survey recent developments in the emerging area of database systems tailored for data exploration. We discuss new ideas on how to store and access data as well as new ideas on how to interact with a data system to enable users and applications to quickly figure out which data parts are of interest. In addition, we discuss how to exploit lessons-learned from past research, the new challenges data exploration crafts, emerging applications and future research directions.
Current trends in data management systems, such as cloud and multi-tenant databases, are leading to data processing environments that concurrently execute heterogeneous query workloads. At the same time, these systems need to satisfy diverse performance expectations. In these newly-emerging settings, avoiding potential Quality-of-Service (QoS) violations heavily relies on performance predictability, i.e., the ability to estimate the impact of concurrent query execution on the performance of individual queries in a continuously evolving workload.This paper presents a modeling approach to estimate the impact of concurrency on query performance for analytical workloads. Our solution relies on the analysis of query behavior in isolation, pairwise query interactions and sampling techniques to predict resource contention under various query mixes and concurrency levels. We introduce a simple yet powerful metric that accurately captures the joint effects of disk and memory contention on query performance in a single value. We also discuss predicting the execution behavior of a time-varying query workload through queryinteraction timelines, i.e., a fine-grained estimation of the time segments during which discrete mixes will be executed concurrently. Our experimental evaluation on top of PostgreSQL/TPC-H demonstrates that our models can provide query latency predictions within approximately 20% of the actual values in the average case.
Query performance prediction, the task of predicting the latency of a query, is one of the most challenging problem in database management systems. Existing approaches rely on features and performance models engineered by human experts, but often fail to capture the complex interactions between query operators and input relations, and generally do not adapt naturally to workload characteristics and patterns in query execution plans. In this paper, we argue that deep learning can be applied to the query performance prediction problem, and we introduce a novel neural network architecture for the task: a plan-structured neural network. Our approach eliminates the need for human-crafted feature selection and automatically discovers complex performance models both at the operator and query plan level. Our novel neural network architecture can match the structure of any optimizer-selected query execution plan and predict its latency with high accuracy. We also propose a number of optimizations that reduce training overhead without sacrificing effectiveness. We evaluated our techniques on various workloads and we demonstrate that our plan-structured neural network can outperform the state-of-the-art in query performance prediction.
Query optimization is one of the most challenging problems in database systems. Despite the progress made over the past decades, query optimizers remain extremely complex components that require a great deal of hand-tuning for specific workloads and datasets. Motivated by this shortcoming and inspired by recent advances in applying machine learning to data management challenges, we introduce Neo ( Neural Optimizer ), a novel learning-based query optimizer that relies on deep neural networks to generate query executions plans. Neo bootstraps its query optimization model from existing optimizers and continues to learn from incoming queries, building upon its successes and learning from its failures. Furthermore, Neo naturally adapts to underlying data patterns and is robust to estimation errors. Experimental results demonstrate that Neo, even when bootstrapped from a simple optimizer like PostgreSQL, can learn a model that offers similar performance to state-of-the-art commercial optimizers, and in some cases even surpass them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.