Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.Bacteroidetes ͉ marine bacteria ͉ whole-genome analysis ͉ heterotrophic CO2 fixation
We combined denaturing gradient gel electrophoresis (DGGE), catalysed reporter deposition-FISH (CARD-FISH) and clone libraries to investigate the seasonality of the bacterial assemblage composition in north-west Mediterranean coastal waters. DGGE analysis indicated that bacterial diversity changed gradually throughout the year, although with a clear distinction of the summer period. Alphaproteobacteria were the dominant group on an annual basis [29% of the DAPI (4',6-diamidino-2-phenylindole) counts by CARD-FISH, and 70% of the bacterial clones]. The SAR11 clade was most abundant during spring and summer (>20% of DAPI counts), while the Roseobacter clade was abundant primarily in winter and spring (up to 7% of DAPI counts). The phylum Bacteroidetes constituted the second most important group and was quantitatively uniform throughout the year (average 11% of the DAPI counts). Gammaproteobacteria showed a peak during summer (8% of DAPI counts), when most of them belonged to the NOR5 cluster. Clone libraries and CARD-FISH showed reasonable agreement in the quantitative proportions of Bacteroidetes and Gammaproteobacteria, but Alphaproteobacteria were overrepresented in clone libraries. Sequencing of the most predominant DGGE bands failed to detect the SAR11 group despite their high abundance. The combination of the three molecular approaches allowed a comprehensive assessment of seasonal changes in bacterial diversity.
We collected surface samples in Franklin Bay (Western Arctic) from ice-covered to ice-free conditions, to determine seasonal changes in the identity and in situ activity of the prokaryotic assemblages. Catalysed reported fluorescence in situ hybridization was used to quantify the abundance of different groups, and combined with microautoradiography to determine the fraction of active cells taking up three substrates: glucose, amino acids and ATP. In surface waters, Archaea accounted for 16% of the total cell count in winter, but decreased to almost undetectable levels in summer, when Bacteria made up 97% of the total cell count. Alphaproteobacteria were the most abundant group followed by Bacteroidetes (average of 34% and 14% of total cell counts respectively). Some bacterial groups appearing in low abundances (< 10% of total cell counts), such as Betaproteobacteria, Roseobacter and Gammaproteobacteria, showed a high percentage of active cells. By contrast, more abundant groups, such as SAR11 or Bacteroidetes, had a lower percentage of active cells in the uptake of the substrates tested. Archaea showed low heterotrophic activity throughout the year. In comparison with temperate oceans, the percentage of active Bacteria in the uptake of the substrates was relatively high, even during the winter season.
An intrinsically angiogenic impairment exists in CHD that appears to be present in both the maternal and foetal circulation and foetal heart. Our data suggest that an imbalance of angiogenic-antiangiogenic factors is associated with developmental defects of the human heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.