We demonstrate for the first time evidence of a sex-specific association of PSMA6/PSMC6/PSMA3 genetic variants with subtypes of JIA and plasma proteasome concentrations. Theoretical models of the functional significance of allele substitutions are discussed.
Background and Objective. Glucose transport via GLUT1 protein could be one of additional mechanisms of the antidiabetic action of sulfonylureas. Here, the GLUT1 gene and the protein expression was studied in rats in the course of severe and mild streptozotocin-induced diabetes mellitus and under glibenclamide treatment. Material and Methods. Severe and mild diabetes mellitus was induced using different streptozotocin doses and standard or high fat chow. Rats were treated with glibenclamide (2 mg/kg daily, per os for 6 weeks). The therapeutic effect of glibenclamide was monitored by measuring several metabolic parameters. The GLUT1 mRNA and the protein expression in the kidneys, heart, and liver was studied by means of real-time R T-PCR and immunohistochemistry. Results. The glibenclamide treatment decreased the blood glucose concentration and increased the insulin level in both models of severe and mild diabetes mellitus. Severe diabetes mellitus provoked an increase in both GLUT1 gene and protein expression in the kidneys and the heart, which was nearly normalized by glibenclamide. In the kidneys of mildly diabetic rats, an increase in the GLUT1 gene expression was neither confirmed on the protein level nor influenced by the glibenclamide treatment. In the liver of severely diabetic rats, the heart and the liver of mildly diabetic rats, the GLUT1 gene and the protein expression was changed independently of each other, which might be explained by abortive transcription, and pre- and posttranslational modifications of gene expression. Conclusions. The GLUT1 expression was found to be affected by the glucose and insulin levels and can be modulated by glibenclamide in severely and mildly diabetic rats. Glibenclamide can prevent the liver damage caused by severe hyperglycemia.
Background: The tightly bound to DNA proteins (TBPs) is a protein group that remains attached to DNA with covalent or non-covalent bonds after its deproteinisation. The functional role of this group is as yet not completely understood. The main goal of this study was to evaluate tissue specific changes in the TBP distribution in barley genes and chromosomes in different phases of shoot and seed development. We have: 1. investigated the TBP distribution along Amy32b and Bmy1 genes encoding low pI α-amylase A and endosperm specific β-amylase correspondingly using oligonucleotide DNA arrays; 2. characterized the polypeptide spectrum of TBP and proteins with affinity to TBP-associated DNA; 3. localized the distribution of DNA complexes with TBP (TBP-DNA) on barley 1H and 7H chromosomes using mapped markers; 4. compared the chromosomal distribution of TBP-DNA complexes to the distribution of the nuclear matrix attachment sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.