In this work, we demonstrate the epitaxial growth of a gallium-nitride (GaN) buffer structure qualified for 1200 V applications on 200 mm engineered poly-AlN substrates with hard breakdown >1200 V. The manufacturability of a 1200 V qualified buffer structure opens doors to high voltage GaN-based power applications such as in electric cars. Key to achieving the high breakdown voltage is careful engineering of the complex epitaxial material stack in combination with the use of 200 mm engineered poly-AlN substrates. The CMOS-fab friendly engineered poly-AlN substrates have a coefficient of thermal expansion (CTE) that closely matches the CTE of the GaN/AlGaN epitaxial layers, paving the way for a thicker buffer structure on large diameter substrates, while maintaining the mechanical strength of the substrates and reaching higher voltage operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.