In some areas of knowledge, we can find negative variables (ℝ-), to have a statistical model is crucial to represent the phenomenon and explain it using other variables. This paper proposes a regression model to analyze negative random variables using the reflected Weibull distribution. We developed the RelDists package in the R programming language to implement the proposed model. A Monte Carlo simulation study was conducted to explore the performance of the estimation procedure considering censored and uncensored data and the presence and absence of covariates. From the simulation study, we found that the estimation procedure achieves accurate estimations of the parameters as the sample size increases and the percentage of censoring decreases. In the paper, we present an application of the proposed model using experimental data from a compression test with concrete specimens. In the application, a model was fitted to explain the shrinkage strain using the variable time. The regression model for negative variables and the RelDists package can be used by academic, scientific, and business communities to perform reliability analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.