Ventricular fibrillation is the leading cause of sudden cardiac death. In fibrillation, fragmented electrical waves meander erratically through the heart muscle, creating disordered and ineffective contraction. Theoretical and computer studies, as well as recent experimental evidence, have suggested that fibrillation is created and sustained by the property of restitution of the cardiac action potential duration (that is, its dependence on the previous diastolic interval). The restitution hypothesis states that steeply sloped restitution curves create unstable wave propagation that results in wave break, the event that is necessary for fibrillation. Here we present experimental evidence supporting this idea. In particular, we identify the action of the drug bretylium as a prototype for the future development of effective restitution-based antifibrillatory agents. We show that bretylium acts in accord with the restitution hypothesis: by flattening restitution curves, it prevents wave break and thus prevents fibrillation. It even converts existing fibrillation, either to a periodic state (ventricular tachycardia, which is much more easily controlled) or to quiescent healthy tissue.
Background-The role of papillary muscle (PM) in the generation and maintenance of reentry is unclear. Methods and Results-Computerized mapping (477 bipolar electrodes, 1.6-mm resolution) was performed in fibrillating right ventricles (RVs) of swine in vitro. During ventricular fibrillation (VF), reentrant wave fronts often transiently anchored to the PM. Tissue mass reduction was then performed in 10 RVs until VF converted to ventricular tachycardia (VT). In an additional 6 RVs, procainamide infusion converted VF to VT. Maps showed that 77% (34 of 44) of all VT episodes were associated with a single reentrant wave front anchored to the PM. Purkinje fiber potentials preceded the local myocardial activation, and these potentials were recorded mostly around the PM. When PM was trimmed to the level of endocardium (nϭ4), sustained VT was no longer inducible. Transmembrane potential recordings (nϭ5) at the PM revealed full action potential during pacing, without evidence of ischemia. Computer simulation studies confirmed the role of PM as a spiral wave anchoring site that stabilized wave conduction. Conclusions-We conclude that PM is important in the generation and maintenance of reentry during VT and VF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.