From the multitude of materials currently available on the market that can be used in the development of microparticles, sodium alginate has become one of the most studied natural anionic polymers that can be included in controlled-release pharmaceutical systems alongside other polymers due to its low cost, low toxicity, biocompatibility, biodegradability and gelatinous die-forming capacity in the presence of Ca2+ ions. In this review, we have shown that through coacervation, the particulate systems for the dispensing of drugs consisting of natural polymers are nontoxic, allowing the repeated administration of medicinal substances and the protection of better the medicinal substances from degradation, which can increase the capture capacity of the drug and extend its release from the pharmaceutical form.
The aim of this paper was to formulate microspheres based on biodegradable polymers (chitosan and sodium alginate), using the complex coacervation technique. Subsequently, the prepared microspheres were loaded with quercetin (QUE), a pharmacological active ingredient insoluble in water and unstable to light, temperature and air. After preparation, the loaded microspheres underwent several studies for physical chemical characterization (performed by scanning electron microscopy—SEM, laser 3D scanning, and thermal analysis—TA). Furthermore, they were analyzed in order to obtain information regarding swelling index, drug entrapment, and in vitro release capacity. The obtained experimental data demonstrated 86.07% entrapment of QUE into the microspheres, in the case of the one with the highest Ch concentration. Additionally, it was proved that such systems allow the controlled release of the active drug over 24 h at the intestinal level. SEM micrographs proved that the prepared microspheres have a wrinkled surface, with compact structures and a large number of folds. On the basis of the TA analysis, it was concluded that the obtained microspheres were thermally stable, facilitating their usage at normal physiological temperatures as drug delivery systems.
The aim of this study was to determine the potential pharmaceutical applications of quercetin—a natural flavonoid compound with a polyphenolic structure—following its encapsulation in polymeric microspheres resistant to degradation. The microspheres were prepared from natural polymeric compounds (chitosan and sodium alginate) via a complex coacervation method, with the goal of protecting quercetin from the degradation reactions that can affect its bioactivity. After the microspheres were prepared, they were characterized using various analytical methods. The encapsulation efficiency (EE (%)), swelling index (idxSWL%), roughness (measured using confocal laser scanning microscopy—CLSM), and surface morphology (measured using scanning electron microscopy—SEM) were all analyzed. In addition, the release capacity of quercetin from the microspheres (mQrel%) and the antimicrobial activity of the microspheres were evaluated in vitro. Finally, a multivariate statistical analysis (MANOVA, p = 0.05, PCA, and AHC) was conducted. This analysis showed that chitosan–sodium alginate–quercetin microspheres (CAQ-Ms) entrap 86.91 ± 1.10–93.11 ± 0.72% quercetin; in vitro, 71.46 ± 0.25–91.06 ± 0.15% quercetin was released, and the swelling index was higher (6701.29 ± 0.39–10,009.30 ± 1.11%) in the phosphate-buffered solution with a pH of 7.4. The CLSM and SEM analyses showed that the polymer concentration in CAQ-Ms was increased, and the roughness and smoothness of the microspheres were also increased. SEM also showed that the external layer of CAQ-Ms was formed from chitosan and the internal layer was formed from sodium alginate. Antimicrobial tests showed that CAQ-Ms had antibacterial and antifungal effects on the analyzed strains and produced larger inhibition zones between 15.3 and 14.4 mm on Escherichia coli and between 13.3 and 14.2 mm on Candida albicans, and smaller inhibition zones, between 12.4 and 13.6 mm, on Staphylococcus aureus. According to the obtained results, after the multivariate statistical analysis, it can be observed that the best performance was presented by samples P1, P2, and P3. In conclusion, the method used for the formulation of CAQ-Ms was efficient because it enabled an increase in the solubility of quercetin in water and its protection against external and internal degradation in the gastrointestinal tract. This system can be further used to produce new pills for oral administration that are able to reach the small intestine, where they can then release loaded active drugs.
Study objectives: were evaluation of the content in bioactive compounds with antioxidant properties of the species Viola x wittrockiana Gams flowers, cultivated in the Bihor region of Romania. Materials and Methods: Viola x wittrockiana Gams flowers were harvested, dried, then prepared for to evaluate the phenolic and flavonoid contents and for determined antioxidant capacity by the following methods: DPPH and FRAP. Results – after determined the total polyphenolic compounds content the concentration found was contained between 2.5-4.52 mg GAE/100 g dry flowers and flavonoids were contained between 46.75-54.49 mg QE/100 g dry flowers garden pansies. Conclusions: strong correlation between the polyphenols and flavonoids content and antioxidant properties which have been evaluated at the extracts obtained from the pansy flowers have shown that the plant has inhibition capacity on DPPH reagent contained between 62.644 – 92.241% and antioxidant capacity which varies between 494.588-889.882 made by FRAP method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.