Background The antimicrobial activity of the Equisetum arvense L. extract and the mechanisms involved in the in vitro effects on endothelial vascular cells exposed to hyperosmotic stress were evaluated. Methods Antimicrobial activity was evaluated by disk diffusion method and minimum inhibitory concentration (MIC) determination, and oxidative stress, inflammation, and apoptosis, in pretreatment with Equisetum arvense L., caffeic acid, and cathechin, were quantified. Results The results have shown that Equisetum arvense L. exhibited antibacterial effects only on pathogenic gram-positive cocci. The modulatory activity of Equisetum arvense L. on endothelial cells exposed to hypertonic medium was different and depended on the concentration used. Low concentrations of tested compounds exerted antioxidant effect and diminished the activity of caspase-8 and also increased IκB expression while in high doses, Equisetum arvense L. was prooxidant, induced apoptosis, and decreased IL-6 secretion. Conclusions These experimental findings suggest that Equisetum arvense L. has antibacterial effects on gram-positive cocci and, administered in low dose, may be a new therapeutic approach for diseases associated with hypertonic conditions or oxidative stress and apoptosis.
Significant progresses have been made in the inorganic and organic chemistry up to the present concerning the synthesis, characterization, and application of the metal complexes of pharmaceutical substances. From the wide range of fields in which these coordination compounds find their application, many efforts were focused on the study of their importance in the biological processes. The coordination complexes of many pharmaceutical substances having different pharmacological effects e.g., pyrazinamide (PZA), nicotinamide (NAM), nicotinic acid (NIC), theophylline (TEO), captopril (CPL), tolbutamide (TBA), clonidine (CLN), guanfacine (GUAF), etc. with transition metals were synthesized and used in order to improve their pharmacological and pharmacotechnical properties and also for the drug analysis and control. Several techniques such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), X-ray spectroscopy, mass spectrometry, ultraviolet-visible (UV-Vis) spectrophotometry, electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction, elemental analysis, electrochemical methods, thermal methods, and scanning electron microscopy were used for the physicochemical characterization of the complex composition. A significant interest in the development of metal complex-based drugs with unique research and therapeutic and diagnostic opportunities is currently observed in the medicinal inorganic chemistry area.
From the multitude of materials currently available on the market that can be used in the development of microparticles, sodium alginate has become one of the most studied natural anionic polymers that can be included in controlled-release pharmaceutical systems alongside other polymers due to its low cost, low toxicity, biocompatibility, biodegradability and gelatinous die-forming capacity in the presence of Ca2+ ions. In this review, we have shown that through coacervation, the particulate systems for the dispensing of drugs consisting of natural polymers are nontoxic, allowing the repeated administration of medicinal substances and the protection of better the medicinal substances from degradation, which can increase the capture capacity of the drug and extend its release from the pharmaceutical form.
Due to the fact that the therapeutic activity of the Salvia officinalis L. is well-known, we aim to evaluate the therapeutic properties of the Verbascum phlomoides L. In the present study, we conducted extractive solutions of the both plant species after having undergone lyophilization for a better preservation of the active extracted ingredients. Lyophilized extracts were evaluated in terms of chemical composition. The polyphenolic content of the extracts was obtained using HPLC method, while the total polyphenol content (expressed in gallic acid) and total flavonoids content (expressed in quercetin) were quantified using spectrophotometric methods. The studies carried out have shown the protective effect of plant extracts against free radicals � antioxidant properties assessed by various methods (DPPH method, FRAP method, TEAC method, SOD-like activity in vivo), the antimicrobial activity and cytotoxicity assays. After evaluating the therapeutic properties of freeze-dried extracts of the two plants, they will be associated in the formulation of a mouthwash with known therapeutic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.