The purpose of this study was to examine the feasibility and acceptability of remotely delivered, home-based exercise programs on physical function and well-being in self-isolating older adults during the COVID-19 pandemic. In a four-arm randomized controlled trial, 63 participants (aged 65 years and older) were allocated to one of three home-based daily (2 × 10-min) exercise interventions (exercise snacking, tai chi snacking, and combination) or control (UK National Health Service Web pages). Functional assessments were conducted via video call at baseline and 4-week follow-up. A web-based survey assessed the acceptability of each exercise program and secondary psychological/well-being outcomes. Ecological momentary assessment data, collected in Weeks 1 and 4, explored feeling states as antecedents and consequences of exercise. All intervention groups saw increased physical function at follow-up and displayed good adherence with exercise snacking considered the most acceptable program. Multilevel models revealed reciprocal associations between feelings of energy and exercise engagement. Further studies are needed with larger, more diverse demographic samples.
Vitamin D is lipophilic and accumulates substantially in adipose tissue. Even without supplementation, the amount of vitamin D in the adipose of a typical adult is equivalent to several months of the daily reference nutrient intake (RNI). Paradoxically, despite the large amounts of vitamin D located in adipose tissue, individuals with obesity are often vitamin D deficient according to consensus measures of vitamin D status (serum 25‐hydroxyvitamin D concentrations). Thus, it appears that vitamin D can become ‘trapped’ in adipose tissue, potentially due to insufficient lipolytic stimulation and/or due to tissue dysfunction/adaptation resulting from adipose expansion. Emerging evidence suggests that exercise may mobilise vitamin D from adipose (even in the absence of weight loss). If exercise helps to mobilise vitamin D from adipose tissue, then this could have important ramifications for practitioners and policymakers regarding the management of low circulating levels of vitamin D, as well as chronically low levels of physical activity, obesity and associated health conditions. This perspective led us to design a study to examine the impact of exercise on vitamin D status, vitamin D turnover and adipose tissue vitamin D content (the VitaDEx project). The VitaDEx project will determine whether increasing physical activity (via exercise) represents a potentially useful strategy to mobilise vitamin D from adipose tissue.
Loss of muscle mass and strength are seemingly accepted as part of the ageing process, despite ultimately leading to the loss of independence. Resistance exercise is considered to be primary defence against loss of muscle function in older age, but it typically requires access to exercise equipment often in a gym environment. This pilot study aimed at examining the effect of a 28-day, unsupervised home-based exercise intervention on indices of leg strength and muscle size in healthy older adults. Twenty participants were randomly assigned to either maintain their habitual physical activity levels (Control; n=10; age, 74 (5) years; body mass, 26.3 (3.5) kg/m2) or undertake “exercise snacks” twice daily (ES; n=10; age, 70 (4) years; body mass, 25.0 (3.4) kg/m2). Both groups consumed 150 g of yogurt at their breakfast meal for the duration of the intervention. Sixty-second sit-to-stand score improved by 31% in ES, with no change in Control (p < 0.01). Large effect sizes were observed for the difference in change scores between the groups for interpolated maximum leg pressing power (6% increase in ES) and thigh muscle cross-sectional area (2% increase in ES). The present pilot data suggest that exercise snacking might be a promising strategy to improve leg muscle function and size in older adults and that further investigation into zero-cost exercise strategies that allow high frequency of training is warranted.
Skeletal muscle mass is in a constant state of turnover, and atrophy is the result of a shift in the balance of muscle protein synthesis and breakdown resulting in net muscle protein loss. Total disuse of skeletal muscle quickly leads to muscle atrophy and loss of strength, and this has been repeatedly demonstrated in studies employing bed rest and lower limb immobilisation methodologies in young healthy participants. Fewer studies have focused on older participants (>65 years of age), but those that have provide evidence that advancing age brings increased vulnerability to rapid and marked loss of muscle size and strength during period of total muscle unloading. Increased systemic inflammation and reduced protein synthetic responses to protein feeding and muscle contraction might influence the severity of muscle protein loss during periods of total unloading compared with younger individuals. Less extreme reductions in muscle loading (e.g., 2 weeks of reducing daily ambulation to <1500 steps/day) have also been shown to result in decreases in muscle mass. This step-reduction model may be more relevant than total bed rest or limb immobilisation for examining real-world scenarios that present a physiological challenge to the maintenance of skeletal muscle mass in older individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.