Garnet is a prototypical mineral in metamorphic rocks because it commonly preserves chemical and textural features that can be used for untangling its metamorphic development. Large garnet porphyroblasts may show extremely complex internal structures as a result of a polycyclic growth history, deformation, and modification of growth structures by intra‐ and intercrystalline diffusion. The complex internal structure of garnet porphyroblasts from garnet–phengite schists (GPS) of the Zermatt area (Western Alps) has been successfully decoded. The centimetre‐sized garnet porphyroblasts are composed of granulite facies garnet fragments overgrown by a younger generation of grossular‐rich eclogite facies garnet. The early granulite facies garnet (G‐Grt) formed from low‐P, high‐T metamorphism during a pre‐Alpine orogenic event. The late garnet (E‐Grt) is typical of high‐pressure, low‐temperature (HPLT) metamorphism and can be related to Alpine subduction of the schists. Thus, the garnet of the GPS are polycyclic (polymetamorphic). G‐Grt formation occurred at ~670 MPa and 780°C, E‐Grt formed at ~1.7 GPa and 530°C. The G‐Grt is relatively rich in Prp and poor in Grs, while E‐Grt is rich in Grs and poor in Prp. The Alm content (mol.%) of G‐Grt is 68 of E‐Grt 55. After formation of E‐Grt between and around fragmented G‐Grt at 530°C, the GPS have been further subducted and reached a maximum temperature of 580°C before exhumation started. Garnet composition profiles indicate that the initially very sharp contacts between the granulite facies fragments of G‐Grt and fracture seals of HPLT garnet (E‐Grt) have been modified by cation diffusion. The profiles suggest that Ca did not exchange at the scale of 1 µm, whereas Fe and Mg did efficiently diffuse at the derived maximum temperature of 580°C for the GPS at the scale of 7–8 µm. The Grt–Grt diffusion profiles resulted from spending c. 10 Ma at 530–580°C along the P–T–t path. The measured Grt composition profiles are consistent with diffusivities of log DMgFe = −25.8 m2/s from modelled diffusion profiles. Mg loss by diffusion from G‐Grt is compensated by Fe gain by diffusion from E‐Grt to maintain charge balance. This leads to a distinctive Fe concentration profile typical of uphill diffusion.
The Theodul-Glacier-Unit (TGU) is a 100 m thick and 2 km long slab of pre-Alpine schist, gneiss and mafic rocks tectonically emplaced in the eclogite-facies Zermatt-Saas meta-ophiolite nappe (ZSU). The meta-sedimentary rocks occur mostly as garnet-phengite schists with locally cm-sized garnet porphyroblasts. The metavolcanic basic rocks are present as variably retrogressed eclogites showing a continental basalt signature and contain abundant zircon, which is unusual for basalts. The zircons dated with the U–Pb system yield an upper intercept age of 295 ± 16 Ma and a lower intercept age of 145 ± 34 Ma. The early Permian age is interpreted to represent the age of high-grade granulite facies metamorphism, evidence of which is also preserved in the cores of garnet porphyroblasts of the Grt-Ph schists. The lower intercept age corresponds to the time of continental breakup and the initiation of the Tethys in the Mid-Jurassic; these events may have created the TGU as an extensional allochton. Eclogite facies metamorphism recorded by the TGU rocks occurred during Alpine subduction at 57 Ma, the Lu–Hf age of TGU eclogite garnets. The TGU reached a depth of about 53 km at P–T conditions of 1.7 GPa and 520 °C derived from both, eclogite and Grt-Ph schist. This is in contrast to the ZSU surrounding the TGU with a reported subduction depth of more than 80 km at 43 Ma. It is proposed here that TGU and ZSU were subducted separately out of sequence. After juxtaposition of the two units during late Alpine thrusting and folding forming the present day geometry of nappes in the Zermatt-Saas region both units were progressively metamorphosed to about 650 MPa and 470 °C. This late prograde metamorphism at 34 Ma produced oligoclase + magnesio-hornblende in the matrix of Grt-Ph schists and eclogites. The derived TGU data document a complete Wilson Cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.