The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Purpose: Differentiation between tumor recurrence and treatment-related contrast enhancement in MRI can be difficult. Late enhancement MRI up to 75 min after contrast agent application has been shown to improve differentiation between tumor recurrence and treatment-related changes. We investigated the diagnostic performance of late enhancement using a rapid MRI protocol optimized for clinical workflow. Methods: Twenty-three patients with 28 lesions suspected for glioma recurrence underwent MRI including T1-MPRAGE-series acquired 2 and 20 min after contrast agent administration. Early contrast series were subtracted from late contrast series using motion correction. Contrast enhancing lesions were retrospectively and independently evaluated by two readers blinded to the patients’ later clinical course and histology with or without the use of late enhancement series. Sensitivity, specificity, NPV, and PPV were calculated for both readers by comparing results of MRI with histological samples. Results: Using standard MR sequences, sensitivity, specificity, PPV, and NPV were 0.84, 0, 0.875, and 0 (reader 1) and 0.92, 0, 0.885, and 0 (reader 2), respectively. Early late enhancement increased sensitivity, specificity, PPV, and NPV to 1 for each value and for both readers. Inter-reader reliability increased from 0.632 (standard MRI sequences) to 1.0 (with early late enhancement). Conclusion: The described rapid late enhancement MRI protocol improves MRI-based discrimination between tumor tissue and treatment-related changes of the brain parenchyma.
Purpose Structured reporting is an essential step in establishing standardized quality standards in diagnostic radiology. The German Society of Radiology and the German Society of Neuroradiology aim to provide templates for the structured reporting of different radiological examinations.
Method The Information Technology working group of the German Society of Radiology developed structured templates for the radiological reporting of different indications in consensus with specialist support by experts.
Results We present a template for the structured reporting of examinations of patients with acute ischemic stroke by non-contrast computed tomography, CT angiography, and CT perfusion. This template is provided on the website www.befundung.drg.de for free use.
Conclusion Implementation of the structured template may increase quality and provide a minimum standard for radiological reports in patients with acute ischemic stroke.
Key Points:
Citation Format
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.