We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
SummaryAcute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L, BCL2, and MEN1, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A as a candidate for downstream study. KAT2A inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.
The poor correlation of mutational landscapes with phenotypes limits our understanding of pancreatic ductal adenocarcinoma (PDAC) pathogenesis and metastasis. Here we show a critical role of oncogenic dosage-variation in PDAC biology and phenotypic diversification. We found gene-dosage increase of mutant KRASMUT in human PDAC precursors, driving both early tumorigenesis and metastasis, thus rationalizing early PDAC dissemination. To overcome limitations posed to gene-dosage studies by PDAC´s stroma-richness we developed large cell culture resources of metastatic mouse PDAC. Integration of their genomes, transcriptomes and tumor phenotypes with functional studies and human data, revealed additional widespread effects of oncogenic dosage-variation on cell morphology/plasticity, histopathology and clinical outcome, with highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, yet with lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumor-suppressor alterations (Cdkn2a, Trp53, Tgfβ-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive early progression and shape downstream PDAC biology. Our study uncovers universal principles in Ras-driven oncogenesis with potential relevance beyond pancreatic cancer.
We generated high-resolution maps of histone H3 lysine 9/14 acetylation (H3ac), histone H4 lysine 5/8/12/16 acetylation (H4ac), and histone H3 at lysine 4 mono-, di-, and trimethylation (H3K4me1, H3K4me2, H3K4me3, respectively) across the ENCODE regions. Studying each modification in five human cell lines including the ENCODE Consortium common cell lines GM06990 (lymphoblastoid) and HeLa-S3, as well as K562, HFL-1, and MOLT4, we identified clear patterns of histone modification profiles with respect to genomic features. H3K4me3, H3K4me2, and H3ac modifications are tightly associated with the transcriptional start sites (TSSs) of genes, while H3K4me1 and H4ac have more widespread distributions. TSSs reveal characteristic patterns of both types of modification present and the position relative to TSSs. These patterns differ between active and inactive genes and in particular the state of H3K4me3 and H3ac modifications is highly predictive of gene activity. Away from TSSs, modification sites are enriched in H3K4me1 and relatively depleted in H3K4me3 and H3ac. Comparison between cell lines identified differences in the histone modification profiles associated with transcriptional differences between the cell lines. These results provide an overview of the functional relationship among histone modifications and gene expression in human cells.
Histone deacetylases (HDAC) 1 and 2 are highly similar enzymes that help regulate chromatin structure as the core catalytic components of corepressor complexes. Although tissue-specific deletion of HDAC1 and HDAC2 has demonstrated functional redundancy, germ-line deletion of HDAC1 in the mouse causes early embryonic lethality, whereas HDAC2 does not. To address the unique requirement for HDAC1 in early embryogenesis we have generated conditional knockout embryonic stem (ES) cells in which HDAC1 or HDAC2 genes can be inactivated. Deletion of HDAC1, but not HDAC2, causes a significant reduction in the HDAC activity of Sin3A, NuRD, and CoREST corepressor complexes. This reduced corepressor activity results in a specific 1.6-fold increase in histone H3 K56 acetylation (H3K56Ac), thus providing genetic evidence that H3K56Ac is a substrate of HDAC1. In culture, ES cell proliferation was unaffected by loss of either HDAC1 or HDAC2. Rather, we find that loss of HDAC1 affects ES cell differentiation. ES cells lacking either HDAC1 or HDAC2 were capable of forming embryoid bodies (EBs), which stimulates differentiation into the three primary germ layers. However, HDAC1-deficient EBs were significantly smaller, showed spontaneous rhythmic contraction, and increased expression of both cardiomyocyte and neuronal markers. In summary, our genetic study of HDAC1 and HDAC2 in ES cells, which mimic the embryonic epiblast, has identified a unique requirement for HDAC1 in the optimal activity of HDAC1/2 corepressor complexes and cell fate determination during differentiation.corepressor | acetylation | deacetylation | chromatin C lass I histone deacetylases (HDAC1, -2, -3, and -8) are highly conserved enzymes present in the nucleus of all cells, where they help modulate levels of gene expression (1). The best characterized substrates of HDACs are the N-terminal tails of the core histones H2A, H2B, H3 and H4. Deacetylation of histone tails results in a "tightening" of chromatin, due to the electrostatic potential of unacetylated lysine residues to promote internucleosomal interactions (2, 3) and the loss of a binding site for components of the transcriptional machinery containing a bromodomain, e.g., TAFII1 (4).Among the class I HDACs, HDAC1 and HDAC2 are the most similar (83% amino acid identity), sharing an almost identical catalytic core domain and a conserved C-terminal tail (5). In mammalian cells HDAC1 and HDAC2 interact together (6) to form the catalytic core of a number of higher-order complexes including Sin3A, NuRD, CoREST, and NODE (reviewed in ref. 1). These complexes are then targeted to chromatin by sequencespecific (often cell-specific) transcription factors to repress transcription in cooperation with other chromatin modifiers, such as the lysine-specific demethylase, LSD1, in the CoREST complex (7-9). As part of these multiprotein complexes, the activity of HDAC1 and HDAC2 has been implicated in the regulation of cell cycle progression by tumor suppressors (10-12), differentiation (13, 14), cellular aging (15), and c...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.