Background Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. Results We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. Conclusions Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.
Species of the gobiid genus Schindleria are among the smallest and fastest reproducing vertebrates of the oceans. We describe a new species, Schindleria qizma, from the Red Sea, Saudi Arabia. It is an extreme example of progenesis, within the already paedomorphic genus, with morphological traits clearly differentiating it from its congeners. Schindleria qizma has a unique, unflexed notochord with a straight urostyle of which the tip is inserted into the hypural cartilage, rather than the typical flexed notochord with an upturned urostyle of the other species of Schindleria. Schindleria qizma belongs to the short dorsal-fin type of Schindleria. It is further characterized by an elongated but relatively deep body; a short dorsal fin originating just slightly anterior to the anal fin (predorsal-fin length 59.4% of SL vs. preanal-fin length 60.2% of SL); a head continuously increasing in depth posteriorly with a straight dorsal profile; a short snout (18.6% of head length); large eyes (34.4% of head length); a short pectoral-radial plate (6.3% of SL); 13 dorsal-fin rays; 11 anal-fin rays; 0–2 procurrent rays (where the last procurrent ray is short, if present); an anal fin with the first anal-fin ray situated opposite the second dorsal-fin ray; toothless oral jaws; females with few (10–11, total) but very large (4.6% of SL) eggs and with a conspicuous urogenital papilla characterized by a wide urogenital opening flanked by two long, bilobed projections; a dorsally pigmented swim-bladder; blackish, iridescent eyes, capped by a silvery layer with irregular rows of black dots or blotches; and no additional external pigmentation on its body, at least in preserved specimens.
The north-west alpine distributed hairy snail Trochulus clandestinus (Hartmann, 1821) was recorded for the first time from Austria. Two living specimens were found in Vorarlberg 11 July 2016. The animals were subjected to genetic barcoding and their genital organs were dissected. The taxonomic situation within north-west alpine species of the genus Trochulus is not unambiguously resolved, but the assignment of the Austrian specimens as T. clandestinus is the most reliable at the current state of knowledge. The habitat of the Austrian location concurs with those of autochthonous populations in Switzerland. Nevertheless, for now it cannot be clearly stated whether the species settled in Vorarlberg directly after the end of the last glaciation or whether the current finding is a result of recent anthropogenic introduction.
The Austrian endemic land snail species Noricella oreinos (formerly Trochulus oreinos) occurs in the Northeastern Calcareous Alps at high elevations. Two morphologically highly similar subspecies N. o. oreinos and N. o. scheerpeltzi have been described. First analyses of mitochondrial and nuclear marker sequences indicated a high genetic divergence between them. In the present study, we aimed to assess gene flow between the two subspecies which should help to re‐evaluate their taxonomic status. Sequence data and amplified fragment length polymorphism (AFLP) markers of 255 Noricella specimens covering the whole distribution range were analyzed. A clear geographic separation was found within the potential contact zone, the Haller Mauern mountain range. Samples of all western sites were part of the clade representing N. o. scheerpeltzi and almost all samples from the eastern sites clustered with N. o. oreinos. However, within two sampling sites of the eastern Haller Mauern, a few individuals possessed a COI sequence matching the N. o. oreinos clade whereas at the ITS2 locus they were heterozygous possessing the alleles of both taxa. Contrary to the ITS2 results indicating historical and/or ongoing hybridization, AFLP analyses of 202 individuals confirmed a clear separation of the two taxa congruent with the mitochondrial data. Although they occur on the same mountain range without any physical barrier, no indication of ongoing gene flow between the two taxa was found. Thus, we conclude that the two taxa are separate species N. oreinos and N. scheerpeltzi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.