It has been proposed that in slow‐growing vertebrate populations survival generally has a greater influence on population growth than reproduction. Despite many studies cautioning against such generalizations for conservation, wildlife management for slow‐growing populations still often focuses on perturbing survival without careful evaluation as to whether those changes are likely or feasible. Here, we evaluate the relative importance of reproduction and survival for the conservation of two bottlenose dolphin (Tursiops cf aduncus) populations: a large, apparently stable population and a smaller one that is forecast to decline. We also assessed the feasibility and effectiveness of wildlife management objectives aimed at boosting either reproduction or survival. Consistent with other analytically based elasticity studies, survival had the greatest effect on population trajectories when altering vital rates by equal proportions. However, the findings of our alternative analytical approaches are in stark contrast to commonly used proportional sensitivity analyses and suggest that reproduction is considerably more important. We show that in the stable population reproductive output is higher, and adult survival is lower;the difference in viability between the two populations is due to the difference in reproduction;reproductive rates are variable, whereas survival rates are relatively constant over time;perturbations on the basis of observed, temporal variation indicate that population dynamics are much more influenced by reproduction than by adult survival;for the apparently declining population, raising reproductive rates would be an effective and feasible tool to reverse the forecast population decline; increasing survival would be ineffective. Our findings highlight the importance of reproduction – even in slow‐growing populations – and the need to assess the effect of natural variation in vital rates on population viability. We echo others in cautioning against generalizations based on life‐history traits and recommend that population modeling for conservation should also take into account the magnitude of vital rate changes that could be attained under alternative management scenarios.
Inherent difficulties in determining the sex of free-ranging, sexually monomorphic species often prevents a sex-specific focus on estimating abundance, movement patterns and survival rates. This study provides insights into sex-specific population parameters of Indo-Pacific bottlenose dolphins (Tursiops aduncus). Systematic, boat-based photo-identification surveys (n = 417) were conducted year-round from 2007 to 2013 in coastal and estuarine waters off Bunbury, Western Australia. Pollock's Robust Design was used to quantify population parameters for three datasets: (i) adults and juveniles combined, (ii) adult females and, (iii) adult males. For all datasets, abundance estimates varied seasonally, with general highs during summer and/or autumn, and lows during winter. Dolphins had seasonally structured temporary emigration rates with similar trends between sexes. The derived return rate (1-γ ') of temporary emigrants into the study area was highest from winter to spring, indicating that dolphins had a high probability of return into the study area during spring. We suggest that the return of dolphins into the study area and increase in abundance is influenced by the breeding season (summer/autumn). Prey availability is likely a main driver responsible for the movement of dolphins out of the study area during winter. Seasonal apparent survival rates were constant and high (0.98-0.99) for all datasets. High apparent survival rates suggest there is no permanent emigration from the study area. Our sex-specific modeling approach offers a comprehensive interpretation of the population dynamics of a top predator in a coastal and estuarine environment and acts as a model for future sex-based population studies on sexually monomorphic species.
Sensitivity analyses that assess the impact of changing vital rates on population growth have been widely used to guide conservation. If implemented with caution, they can provide guidance as to which management actions will optimize conservation outcomes. In this review, we first focus on the commonly used proportional sensitivity and elasticity analyses that change each vital rate by equal proportions, to assess their importance for wildlife management. These types of analyses also feature potential pitfalls and limitations, including (1) Each vital rate is usually on a different scale. Without appropriate scaling this can result in a flawed evaluation of the importance of vital rates. (2) Vital rates rarely change at equal proportions in nature. This can bring about misguided management recommendations on the basis of vital rate changes that are unrealistic. (3) Proportional sensitivity analyses often do not reflect the feasibility and effectiveness of altering particular demographic parameters. Consequently, relying solely on proportional sensitivities or elasticities can lead to flawed evaluation of the importance of vital rates and thus prioritization of management options that are unrealistic or ineffective. We outline alternative approaches, which involve assessing the impact of threats, the relative demography of stable and declining populations, the effect of observable variation of vital rates on population viability, and the potential effects of feasible management scenarios. Synthesis and applications. Sensitivity analyses are useful tools to guide wildlife management. If implemented and interpreted with care, sensitivity analyses can identify key demographic parameters and threats to population viability. However, their usefulness is limited, when applied without careful evaluation as to whether the perturbations evaluated are realistic, feasible and meet the need of wildlife managers. We caution against the over‐reliance on proportional sensitivity and elasticity analyses and point to alternative approaches, including life‐stage simulation analysis, vital rate sensitivity analysis or manual perturbations.
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia—one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty‐three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population—for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human‐induced changes to the coastal ecosystem it inhabits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.