ATP synthase (F(O)F(1)) operates as two rotary motor/generators coupled by a common shaft. Both portions, F(1) and F(O), are rotary steppers. Their symmetries are mismatched (C(3) versus C(10-14)). We used the curvature of fluorescent actin filaments, attached to the rotating c-ring, as a spring balance (flexural rigidity of 8. 10(-26) Nm(2)) to gauge the angular profile of the output torque at F(O) during ATP hydrolysis by F(1) (see theoretical companion article (. Biophys. J. 81:1234-1244.)). The large average output torque (50 +/- 6 pN. nm) proved the absence of any slip. Variations of the torque were small, and the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the threefold stepping and high activation barrier of the driving motor proper, the rather constant output torque implied a soft elastic power transmission between F(1) and F(O). It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate of the two counteracting and stepping motor/generators.
The rotary motion in response to ATP hydrolysis of the ring of c subunits of the membrane portion, F o , of ATP synthase, F o F 1 , is still under contention. It was studied with EF o EF 1 (Escherichia coli) using microvideography with a fluorescent actin filament. To overcome the limited specificity of actin attachment through a Cys-maleimide couple which might have hampered the interpretation of previous work, we engineered a`strep-tag' sequence into the C-terminal end of subunit c. It served (a) to purify the holoenzyme and (b) to monospecifically attach a fluorescent actin filament to subunit c. EF o EF 1 was immobilized on a Ni-NTA-coated glass slide by the engineered His-tag at the N-terminus of subunit L L. In the presence of MgATP we observed up to five counterclockwise rotating actin filaments per picture frame of 2000 W Wm 2 size, in some cases yielding a proportion of 5% rotating over total filaments. The rotation was unequivocally attributable to the ring of subunit c. The new, doubly engineered construct serves as a firmer basis for ongoing studies on torque and angular elastic distortions between F 1 and F o .
ATP synthase (F-ATPase) produces ATP at the expense of ion-motive force or vice versa. It is composed from two motor/generators, the ATPase (F1) and the ion translocator (F0), which both are rotary steppers. They are mechanically coupled by 360 degrees rotary motion of subunits against each other. The rotor, subunits gamma(epsilon)C10-14, moves against the stator, (alphabeta)3delta(ab2). The enzyme copes with symmetry mismatch (C3 versus C10-14) between its two motors, and it operates robustly in chimeric constructs or with drastically modified subunits. We scrutinized whether an elastic power transmission accounts for these properties. We used the curvature of fluorescent actin filaments, attached to the rotating c ring, as a spring balance (flexural rigidity of 8.10(-26) N x m2) to gauge the angular profile of the output torque at F0 during ATP hydrolysis by F1. The large average output torque (56 pN nm) proved the absence of any slip. Angular variations of the torque were small, so that the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the three-fold stepping and high activation barrier (>40 kJ/mol) of the driving motor (F1) itself, the rather constant output torque seen by F0 implied a soft elastic power transmission between F1 and F0. It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate under load of the two counteracting and stepping motors/generators.
BackgroundAs a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures.ResultsThe selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner.ConclusionThe MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.