We report a sequential one-pot preparation of aromatic trifluoromethyl ketones starting from readily accessible aryl bromides and fluorosulfates, the latter easily prepared from the corresponding phenols. The methodology utilizes low pressure carbon monoxide generated ex situ from COgen to generate Weinreb amides as reactive intermediates that undergo monotrifluoromethylation affording the corresponding aromatic trifluoromethyl ketones (TFMKs) in good yields. The stoichiometric use of CO enables the possibility for accessing 13 C-isotopically labeled TFMK by switching to the use of 13 COgen.
An expedient ex-situ generation of difluoroiodomethane (DFIM) and its immediate use in a Pd-catalyzed difluoromethylation of aryl boronic acids and ester derivatives in a two-chamber reactor is reported. Heating a solution of bromodifluoroacetic acid with sodium iodide in sulfolane proved to be effective for the generation of near stoichiometric amounts of DFIM for the ensuing catalytic coupling step. A two-step difluoromethylation of aryl (pseudo)halides with tetrahydroxydiboron as a low-cost reducing agent, both promoted by Pd catalysis, proved effective to install this fluorine-containing C 1 group onto several pharmaceutically relevant molecules. Finally, the method proved adaptable to deuterium incorporation by simply adding D 2 O to the DFIMgenerating chamber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.