Polyurethane (PU) is a highly engineered and crosslinked polymer found in a plethora of materials such as mattresses, shoes, windmills, and insulation of refrigerating appliances and buildings. Because of PU's inherent stability, chemical recycling is difficult and often affords a secondary feed with different characteristics and properties compared to the original input. In this work, a simple chemical recycling of PU via a solvolysis process using tert-amyl alcohol both as the solvent and reagent is demonstrated. The devised methodology is showcased for the deconstruction of 20 different PU materials with examples of all four cornerstones of PU (rigid solid, rigid foamed, flexible foamed, and flexible solid). The solvolysis affords both polyol and dianiline fractions, constituting monomeric precursors of PU. The methodology is used for the depolymerization of 50 g flexible PU foam affording a polyol within specification of the original virgin polyol (OH value) and an aniline fraction isolated as the precipitated di-HCl salt with a combined mass recovery of 89 wt%. As the solvolysis process provides access to both the polyol and the aniline precursors of the original isocyanate of PU, the procedure presented in this study could pave the way toward a viable circular economy for PU. A further potential utilization of the method is showcased by valorization of a waste stream from split-phase glycolysis, which is another promising method for recovering polyol from flexible PU foam. Finally, preliminary mechanistic investigations are undertaken to probe the intriguing utility of a hindered tertiary alcohol in a solvolysis procedure.
Automated chemical synthesis of oligonucleotides is of fundamental importance for the production of primers for the polymerase chain reaction (PCR), for oligonucleotide-based drugs, and for numerous other medical and biotechnological applications. The highly optimised automised chemical oligonucleotide synthesis relies upon phosphoramidites as the phosphate precursors and one of the drawbacks of this technology is the poor bench stability of phosphoramidites. Here, we report on the development of an on-demand flow synthesis of phosphoramidites from their corresponding alcohols, which is accomplished with short reaction times, near-quantitative yields and without the need of purification before being submitted directly to automated oligonucleotide synthesis. Sterically hindered as well as redox unstable phosphoramidites are synthesised using this methodology and the subsequent couplings are near-quantitative for all substrates. The vision for this technology is direct integration into DNA synthesisers thereby omitting manual synthesis and storage of phosphoramidites.
This Personal Account describes the development of air‐stable and solid precursors for on‐demand release of carbon monoxide. In combination with the development of a two‐chamber reactor, COware®, CO liberation can be achieved under safe working conditions, as well as allowing transition metal‐mediated carbonylations with stoichiometric carbon monoxide. Particularly appealing is the adaptability of this chemical technology for the preparation of carbon isotope labeled bioactive compounds.
Low cost and widely available Cu2O has been identified as a superior catalyst towards decarboxylative aromatic trifluoromethylations in the absence of ligands and additives.
We report a sequential one-pot preparation of aromatic trifluoromethyl ketones starting from readily accessible aryl bromides and fluorosulfates, the latter easily prepared from the corresponding phenols. The methodology utilizes low pressure carbon monoxide generated ex situ from COgen to generate Weinreb amides as reactive intermediates that undergo monotrifluoromethylation affording the corresponding aromatic trifluoromethyl ketones (TFMKs) in good yields. The stoichiometric use of CO enables the possibility for accessing 13 C-isotopically labeled TFMK by switching to the use of 13 COgen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.