Exploration using borehole drilling is a key activity in determining the most appropriate locations for the petroleum industry to develop oil fields. However, estimating the amount of Oil In Place (OIP) relies on computing with a very significant number of geological models, which, due to the ever increasing capability to capture and refine data, is becoming infeasible. As such, data reduction techniques are required to reduce this set down to a smaller, yet still fully representative ensemble. In this paper we explore different approaches to identifying the key grouping of models, based on their most important features, and then using this information select a reduced set which we can be confident fully represent the overall model space. The result of this work is an approach which enables us to describe the entire state space using only 0.5% of the models, along with a series of lessons learnt. The techniques that we describe are not only applicable to oil and gas exploration, but also more generally to the HPC community as we are forced to work with reduced data-sets due to the rapid increase in data collection capability.
We study nonlinear cavity arrays where the particle relaxation rate in each cavity increases with the excitation number. We show that coherent parametric inputs can drive such arrays into states with commensurate filling that form non-equilibrium analogs of Mott insulating states. We explore the boundaries of the Mott insulating phase and the crossover to a delocalized phase with spontaneous first order coherence. While sharing many similarities with the Mott insulator to superfluid transition in equilibrium, the phase diagrams we find also show marked differences. Particularly the off diagonal order does not become long range since the influence of dephasing processes increases with increasing tunneling rates.
Quantitative finance is the use of mathematical models to analyse financial markets and securities. Typically requiring significant amounts of computation, an important question is the role that novel architectures can play in accelerating these models in the future on HPC machines. In this paper we explore the optimisation of an existing, open source, FPGA based Credit Default Swap (CDS) engine using High Level Synthesis (HLS). Developed by Xilinx, and part of their open source Vitis libraries, the implementation of this engine currently favours flexibility and ease of integration over performance.We explore redesigning the engine to fully embrace the dataflow approach, ultimately resulting in an engine which is around eight times faster on an Alveo U280 FPGA than the original Xilinx library version. We then compare five of our engines on the U280 against a 24-core Xeon Platinum Cascade Lake CPU, outperforming the CPU by around 1.55 times, with the FPGA consuming 4.7 times less power and delivering around seven times the power efficiency of the CPU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.