Pharmacophore‐based techniques are nowadays an important part of many computer‐aided drug design workflows and have been successfully applied for tasks such as virtual screening, lead optimization and de novo design. Natural products, on the other hand, can serve as a valuable source for unconventional molecular scaffolds that stimulate ideas for novel lead compounds in a more diverse chemical space that does not follow the rules of traditional medicinal chemistry. The first part of this review provides a brief introduction to the pharmacophore concept, the methods for pharmacophore model generation, and their applications. The second, concluding part, presents examples for recent, pharmacophore method related research in the field of natural product chemistry. The selected examples show, that pharmacophore‐based methods which get mainly applied on synthetic drug‐like molecules work equally well in the realm of natural products and thus can serve as a valuable tool for researchers in the field of natural product inspired drug design.
Enumerating protonation states and calculating microstate pKa values of small molecules is an important yet challenging task for lead optimization and molecular modeling. Commercial and non-commercial solutions have notable limitations such as restrictive and expensive licenses, high CPU/GPU hour requirements, or the need for expert knowledge to set up and use. We present a graph neural network model that is trained on 714,906 calculated microstate pKa predictions from molecules obtained from the ChEMBL database. The model is fine-tuned on a set of 5,994 experimental pKa values significantly improving its performance on two challenging test sets. Combining the graph neural network model with Dimorphite-DL, an open-source program for enumerating ionization states, we have developed the open-source Python package pkasolver, which is able to generate and enumerate protonation states and calculate pKa values with high accuracy.
The accurate prediction of molecular properties, such as lipophilicity and aqueous solubility, are of great importance and pose challenges in several stages of the drug discovery pipeline. Machine learning methods, such as graph-based neural networks (GNNs), have shown exceptionally good performance in predicting these properties. In this work, we introduce a novel GNN architecture, called directed edge graph isomorphism network (D-GIN). It is composed of two distinct sub-architectures (D-MPNN, GIN) and achieves an improvement in accuracy over its sub-architectures employing various learning, and featurization strategies. We argue that combining models with different key aspects help make graph neural networks deeper and simultaneously increase their predictive power. Furthermore, we address current limitations in assessment of deep-learning models, namely, comparison of single training run performance metrics, and offer a more robust solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.