We present a new approach that incorporates flexibility based on extensive MD simulations of protein-ligand complexes into structure-based pharmacophore modeling and virtual screening. The approach uses the multiple coordinate sets saved during the MD simulations and generates for each frame a pharmacophore model. Pharmacophore models with the same pharmacophore features are pooled. In this way the high number of pharmacophore models that results from the MD simulation is reduced to only a few hundred representative pharmacophore models. Virtual screening runs are performed with every representative pharmacophore model; the screening results are combined and rescored to generate a single hit-list. The score for a particular molecule is calculated based on the number of representative pharmacophore models which classified it as active. Hence, the method is called common hits approach (CHA). The steps between the MD simulation and the final hit-list are performed automatically and without user interaction. We test the performance of CHA for virtual screening using screening databases with active and inactive compounds for 40 protein-ligand systems. The results of the CHA are compared to the (i) median screening performance of all representative pharmacophore models of protein-ligand systems, as well as to the virtual screening performance of (ii) a random classifier, (iii) the pharmacophore model derived from the experimental structure in the PDB, and (iv) the representative pharmacophore model appearing most frequently during the MD simulation. For the 34 (out of 40) protein-ligand complexes, for which at least one of the approaches was able to perform better than a random classifier, the highest enrichment was achieved using CHA in 68% of the cases, compared to 12% for the PDB pharmacophore model and 20% for the representative pharmacophore model appearing most frequently. The availabilithy of diverse sets of different pharmacophore models is utilized to analyze some additional questions of interest in 3D pharmacophore-based virtual screening.
Herein we present the algorithm and performance assessment of our newly developed conformer generator iCon that was implemented in LigandScout 4.0. Two data sets of high-quality X-ray structures of drug-like small molecules originating from the Protein Data Bank (200 ligands) and the Cambridge Structural Database (481 molecules) were used to validate iCon's performance in the reproduction of experimental conformations. OpenEye's conformer generator OMEGA was subjected to the same evaluation and served as a reference software in this analysis. We tested several setting patterns in order to identify the most suitable and efficient ones for conformational sampling with iCon; equivalent settings were also tested on OMEGA in order to compare the results obtained from the two programs and better assess iCon's performance. Overall, this study proved that iCon is able to generate reliable representative conformational ensembles of drug-like small molecules, yielding results comparable to those showed by OMEGA, and thus is ready to serve as a valuable tool for computer-aided drug design.
The large neutral amino acid transporter 1 (LAT1) is a promising anticancer target that is required for the cellular uptake of essential amino acids that serve as building blocks for cancer growth and proliferation. Here, we report a structure-based approach to identify chemically diverse and potent inhibitors of LAT1. First, a homology model of LAT1 that is based on the atomic structures of the prokaryotic homologs was constructed. Molecular docking of nitrogen mustards (NMs) with a wide range of affinity allowed for deriving a common binding mode that could explain the structure−activity relationship pattern in NMs. Subsequently, validated binding hypotheses were subjected to molecular dynamics simulation, which allowed for extracting a set of dynamic pharmacophores. Finally, a library of ~1.1 million molecules was virtually screened against these pharmacophores, followed by docking. Biological testing of the 30 top-ranked hits revealed 13 actives, with the best compound showing an IC50 value in the sub-μM range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.