A myriad of downstream communities and industries rely on streams fed by both groundwater discharge and glacier meltwater draining the Cordillera Blanca, Northern Peruvian Andes, which contains the highest density of glaciers in the tropics. During the dry season, approximately half the discharge in the region's proglacial streams comes from groundwater. However, because of the remote and difficult access to the region, there are few field methods that are effective at the reach scale to identify the spatial distribution of groundwater discharge. An energy balance model, Rhodamine WT dye tracing, and high‐definition kite‐borne imagery were used to determine gross and net groundwater inputs to a 4‐km reach of the Quilcay River in Huascaran National Park, Peru. The HFLUX computer programme (http://hydrology.syr.edu/hflux.html) was used to simulate the Quilcay River's energy balance using stream temperature observations, meteorological measurements, and kite‐borne areal photography. Inference from the model indicates 29% of stream discharge at the reach outlet was contributed by groundwater discharge over the study section. Rhodamine WT dye tracing results, coupled with the energy balance, show that approximately 49% of stream water is exchanged (no net gain) with the subsurface as gross gains and losses. The results suggest that gross gains from groundwater are largest in a moraine subreach but because of large gross losses, net gains are larger in the meadow subreaches. These insights into pathways of groundwater–surface water interaction can be applied to improve hydrological modelling in proglacial catchments throughout South America. Copyright © 2016 John Wiley & Sons, Ltd.
Abstract. The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000-6000 m a.s.l.) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.