Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.
We use molecular dynamics (MD) and dynamic light scattering (DLS) measurements to analyze the size of reverse micellar structures in the AOT-water-isooctane system at different water-to-surfactant ratios at ambient temperature and pressure. We find good qualitative agreement for the size and morphology behavior of the reverse micelle structures between molecular dynamics calculations and DLS measurements; however, the average values for the reverse micelle size distributions are systematically larger for the DLS measurements. The latter tends to capture the average hydrodynamic size of the structures based on self-diffusion rather than the average physical size as measured in MD simulations, explaining the systematic deviations observed. The combination of MD with DLS allows a better interpretation of the experimental results, in particular for conditions where the structures are nonspherical, commonly observed at lower water-to-surfactant ratios. We also present and analyze the effect of zirconyl chloride on the micellar size distributions in this system. These type of salts are common for reverse micellar synthesis processes. We find that zirconyl chloride affects significantly the size distributions.
Flow devices fabricated by means of 3D-printing offer an economic and effective approach for testing different electrochemical systems at the laboratory scale. Here, the fabrication and optimization of a novel filter-press electrochemical reactor is described. 3D-printing is used to obtain critical components of the device as a sustainable and efficient manufacturing approach. Hydrodynamics and mass transfer of different flow distributors, turbulence promoters, and nickel foam, as a three-dimensional (3D) electrode, were evaluated by a convenient set of well-known techniques for filter-press reactor characterization. Furthermore, the chemical stability of 3D-printed materials was assessed in several electrolytes used for common electrochemical applications. Designed configurations and geometries exhibited enhanced turbulence and large mass transfer coefficients, which make them adequate for processes such as electrosynthesis, electrodeposition, and electrochemical water splitting. Ultimately, superior performance was validated for nickel foam, demonstrating robustness of the reactor for realistic evaluation of electrocatalytic materials. Therefore, the proposed electrochemical reactor provides a low-cost and versatile alternative for testing electrochemical systems in a wide range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.