Ocular toxoplasmosis (OT) is commonly diagnosed through the analysis of fundus images of the eye by a specialist. Despite Deep Learning being widely used to process and recognize pathologies in medical images, the diagnosis of ocular toxoplasmosis(OT) has not yet received much attention. A predictive computational model is a valuable time-saving option if used as a support tool for the diagnosis of OT. It could also help diagnose atypical cases, being particularly useful for ophthalmologists who have less experience. In this work, we propose the use of a deep learning model to perform automatic diagnosis of ocular toxoplasmosis from images of the eye fundus. A pretrained residual neural network is fine-tuned on a dataset of samples collected at the medical center of Hospital de Clínicas in Asunción, Paraguay. With sensitivity and specificity rates equal to 94% and 93%,respectively, the results show that the proposed model is highly promising. In order to replicate the results and advance further in this area of research, an open data set of images of the eye fundus labeled by ophthalmologists is made available.
In the automatic diagnosis of ocular toxoplasmosis (OT), Deep Learning (DL) has arisen as a powerful and promising approach for diagnosis. However, despite the good performance of the models, decision rules should be interpretable to elicit trust from the medical community. Therefore, the development of an evaluation methodology to assess DL models based on interpretability methods is a challenging task that is necessary to extend the use of AI among clinicians. In this work, we propose a novel methodology to quantify the similarity between the decision rules used by a DL model and an ophthalmologist, based on the assumption that doctors are more likely to trust a prediction that was based on decision rules they can understand. Given an eye fundus image with OT, the proposed methodology compares the segmentation mask of OT lesions labeled by an ophthalmologist with the attribution matrix produced by interpretability methods. Furthermore, an open dataset that includes the eye fundus images and the segmentation masks is shared with the community. The proposal was tested on three different DL architectures. The results suggest that complex models tend to perform worse in terms of likelihood to be trusted while achieving better results in sensitivity and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.