The bay scallop Argopecten irradians (Mollusca: Bivalvia) has dozens of iridescent blue eyes that focus light using mirror-based optics. Here, we test the hypothesis that these eyes appear blue because of photonic nanostructures that preferentially scatter short-wavelength light. Using transmission electron microscopy, we found that the epithelial cells covering the eyes of A. irradians have three distinct layers: an outer layer of microvilli, a middle layer of random close-packed nanospheres and an inner layer of pigment granules. The nanospheres are approximately 180 nm in diameter and consist of electron-dense cores approximately 140 nm in diameter surrounded by less electron-dense shells 20 nm thick. They are packed at a volume density of approximately 60% and energy-dispersive X-ray spectroscopy indicates that they are not mineralized. Optical modelling revealed that the nanospheres are an ideal size for producing angle-weighted scattering that is bright and blue. A comparative perspective supports our hypothesis: epithelial cells from the black eyes of the sea scallop Placopecten magellanicus have an outer layer of microvilli and an inner layer of pigment granules but lack a layer of nanospheres between them. We speculate that light-scattering nanospheres help to prevent UV wavelengths from damaging the internal structures of the eyes of A. irradians and other blue-eyed scallops.
Synopsis The term ‘cognitive template’ originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the ‘template’ itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.