The effect of chromium (Cr) on photosystem II (PSII) electron transport and the change of proteins content within PSII complex were investigated. When Lemna gibba was exposed to Cr during 96 h, growth inhibition was found to be associated with an alteration of the PSII electron transport at both PSII oxidizing and reducing sides. Investigation of fluorescence yields at transients K, J, I, and P suggested for Cr inhibitory effect to be located at the oxygen-evolving complex and Q(A) reduction. Those Cr-inhibitory effects were related to the change of the turnover of PSII D1 protein and the alteration of 24 and 33 kDa proteins of the oxygen-evolving complex. The inhibition of the PSII electron transport and the formation of reactive oxygen species induced by Cr were highly correlated with the decrease in the content of D1 protein and the amount of 24 and 33 kDa proteins. Therefore, functional alteration of PSII activity by Cr was closely related with the structural change within PSII complex.
In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0-4.62 μM Cd(2+). By evaluating the half time of fluorescence transients O-J-I-P at different temperatures (20-30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O-J-I-P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.
The inhibitory effect of chromium (Cr) on photosystem II (PSII) activity was investigated in the green alga Chlamydomonas reinhardtii during different phases of the cell cycle. Algae were cultivated in continuous light or a light/dark cycle (16:8 h) to obtain a synchronously dividing cell culture. The cell division phases were determined with the DNA-specific fluorescent probe SYBR green using flow cytometry. The effect of Cr on PSII activity was investigated after a 24-h treatment with algal cultures having different proportions of newly divided cells (G(0)/G(1)), dividing cells at the DNA replication phase (S), and dividing cells at the mitosis phase (G(2)/M). Using chlorophyll a fluorescence parameters based on PSII electron transport capacity in dark- (Φ(M)II) and light-adapted (Φ'(M)II) equilibrium state, we found that the effect of Cr differs depending on the stage of the cell cycle. When algal cultures had a high proportion of cells actively dividing (M phase), the toxic effect of Cr on PSII activity appeared to be much higher and PSII quantum yield was decreased by 80 % compared to algal cultures mainly in the G(0)/G(1) phase. Therefore, the inhibitory effect of Cr on photosynthesis appears to be different according to the cell cycle state of the algal population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.