The impact of a relaxed InGaN pseudosubstrate on indium incorporation in a full InGaN heterostructure was investigated. Three types of InGaN pseudosubstrates were tested with different a lattice parameters ranging from 3.190 to 3.205 Å, that is to say, greater than that of a GaN template on sapphire. Samples were loaded together in the growth chamber in order to apply exactly the same growth conditions. The effect of the photoluminescence (PL) emission redshift was observed on InyGa1-yN buffer layers and also on InxGa1-xN/InyGa1-yN multiple quantum wells (MQWs). It was found that these pseudosubstrates have the ability to improve the indium incorporation rate, with an increasing effect as the a lattice parameter increases. A strong PL emission redshift was observed in InxGa1-xN/InyGa1-yN MQWs as a function of the increasing a lattice parameter of the InGaN pseudosubstrate, compared to a reference grown on a GaN template. It has been shown that green and amber emissions can be easily reached. A redshift of up to 42 nm was detected between various InGaN pseudosubstrate samples and up to 62 nm compared to a conventional structure emerged from a GaN buffer on the sapphire substrate. The average QW width less than 3 nm indicates a higher In content. The reduced compressive strain originating from the relaxed InGaN substrate allows the reduction in the compositional pulling effect and consequently enables an enhanced In incorporation rate.
The full InGaN structure is used to achieve red light emitting diodes (LEDs). This LED structure is composed of a partly relaxed InGaN pseudo-substrate fabricated by Soitec, namely InGaNOS, a ndoped buffer layer formed by a set of In x Ga 1-x N/GaN superlattices, thin In y Ga 1-y N/In x Ga 1-x N multiple quantum wells, and a p doped In x Ga 1-x N area. p-doped InGaN layers are first studied to determine the optimal Mg concentration. In the case of an In content of 2%, an acceptor concentration of 1x10 19 /cm 3 was measured for a Mg concentration of 2x10 19 /cm 3 . Red electroluminescence was then demonstrated for two generations of LEDs, including chip sizes of 300x300 and 50x50 µm². The differences between these two LED generations are detailed. For both devices, red emission with a peak wavelength at 620 nm was observed for a pumping current density of 12 A/cm². Red light-emission is maintained over the entire tested current range. From the first to the second LED generation, the maximum external quantum efficiency, obtained in the range of 17 to 40 A/cm², was increased by almost one order of magnitude (factor 9) thanks to the different optimizations.
The full InGaN structure was grown on two different InGaNOS substrates from Soitec. An electron blocking layer was inserted in the full InGaN light emitting diode (LED). Enhanced internal quantum efficiency of red emitting InGaN/InGaN quantum wells was measured with a value above 10% at 640 nm. 10 μm diameter circular micro-LEDs are emitted at 625 nm with an external quantum efficiency of 0.14% at 8 A cm −2 with an estimated light extraction efficiency below 4%. With a a lattice parameter of 3.210 Å, InGaN based red LED can also emit up to 650 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.