Among dendritic cells, plasmacytoid dendritic cells (PDC) represent a functionally distinct lineage. Regarding innate immunity, PDC secrete large amounts of type I IFN upon viral exposure or stimulation by microbial products such as unmethylated CpG-motif containing oligo-DNA due to their selective expression of TLR7 and TLR9. We asked whether they could acquire cytotoxic functions during the early phases of infection or after activation with TLR7 or TLR9 agonists. In the present study, we describe a human PDC cell line called GEN2.2, derived from leukemic PDC, that shares most of the phenotypic and functional features of normal PDC. We show that after contact with the influenza virus, GEN2.2, as well as normal PDC, acquires TRAIL and killer activity against TRAIL-sensitive target cells. Moreover, we show that activation of GEN2.2 cells by CpG-motif containing oligo-DNA or R848 also induces TRAIL and endows them with the ability to kill melanoma cells. Therefore, PDC may represent a major component of innate immunity that could participate to the clearance of infected cells and tumor cells. This phenomenon could be relevant for the efficacy of TLR7 or TLR9 agonists in the therapy of infectious disease and cancer.
To assess the sensitivity of primary nonHodgkin lymphoma cells to rituximabmediated cytotoxicity, we compared the potency of several rituximab-mediated killing mechanisms on fresh lymphoma cells. All lymphoma cells tested were equally sensitive to antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-mediated phagocytosis of tumor cells, and rituximab-induced apoptosis. However, they were differentially lysed by complement-dependent cytotoxicity (CDC).We found that taking into account both CD20 and complement regulatory protein expression on tumor cells could predict CDC sensitivity in vitro. Importantly, the sensitivity of lymphoma cells to CDC was consistent with the reported different clinical response rates of lymphomas: rituximab induced high CDC killing of follicular lymphoma cells, whereas mantle cell lymphoma and diffuse large cell lymphoma cells were moderately sensible to CDC, and small lymphocytic lymphoma cells were almost all resistant. We propose that CDC is a determinant mechanism of rituximab-induced killing in vivo. Poor sensitivity to CDC in vitro might predict a poor clinical response, whereas high sensitivity to CDC would only indi-
T cell-mediated immunity to microbes and to cancer can be enhanced by the activation of dendritic cells (DCs) via TLRs. In this study, we evaluated the safety and feasibility of topical imiquimod, a TLR7 agonist, in a series of vaccinations against the cancer/testis Ag NY-ESO-1 in patients with malignant melanoma. Recombinant, full-length NY-ESO-1 protein was administered intradermally into imiquimod preconditioned sites followed by additional topical applications of imiquimod. The regimen was very well tolerated with only mild and transient local reactions and constitutional symptoms. Secondarily, we examined the systemic immune response induced by the imiquimod/NY-ESO-1 combination, and show that it elicited both humoral and cellular responses in a significant fraction of patients. Skin biopsies were assessed for imiquimod’s in situ immunomodulatory effects. Compared with untreated skin, topical imiquimod induced dermal mononuclear cell infiltrates in all patients composed primarily of T cells, monocytes, macrophages, myeloid DCs, NK cells, and, to a lesser extent, plasmacytoid DCs. DC activation was evident. This study demonstrates the feasibility and excellent safety profile of a topically applied TLR7 agonist used as a vaccine adjuvant in cancer patients. Imiquimod’s adjuvant effects require further evaluation and likely need optimization of parameters such as formulation, dose, and timing relative to Ag exposure for maximal immunogenicity.
Plasmacytoid DCs (pDCs) are innate immune cells that are specialized to produce IFN-α and to activate adaptive immune responses. Although IFN-α inhibits HIV-1 replication in vitro, the production of IFN-α by HIVactivated pDCs in vivo may contribute more to HIV pathogenesis than to protection. We have now shown that HIV-stimulated human pDCs allow for persistent IFN-α production upon repeated stimulation, express low levels of maturation molecules, and stimulate weak T cell responses. Persistent IFN-α production by HIV-stimulated pDCs correlated with increased levels of IRF7 and was dependent upon the autocrine IFN-α/β receptor feedback loop. Because it has been shown that early endosomal trafficking of TLR9 agonists causes strong activation of the IFN-α pathway but weak activation of the NF-κB pathway, we sought to investigate whether early endosomal trafficking of HIV, a TLR7 agonist, leads to the IFN-α-producing phenotype we observed. We demonstrated that HIV preferentially traffics to the early endosome in human pDCs and therefore skews pDCs toward a partially matured, persistently IFN-α-secreting phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.