International audienceStatistical assessment of landslide susceptibility has become a major topic of research in the last decade. Most progress has been accomplished on producing susceptibility maps at meso-scales (1:50,000–1:25,000). At 1:10,000 scale, which is the scale of production of most regulatory landslide hazard and risk maps in Europe, few tests on the performance of these methods have been performed. This paper presents a procedure to identify the best variables for landslide susceptibility assessment through a bivariate technique (weights of evidence, WOE) and discusses the best way to minimize conditional independence (CI) between the predictive variables. Indeed, violating CI can severely bias the simulated maps by over- or under-estimating landslide probabilities. The proposed strategy includes four steps: (i) identification of the best response variable (RV) to represent landslide events, (ii) identification of the best combination of predictive variables (PVs) and neo-predictive variables (nPVs) to increase the performance of the statistical model, (iii) evaluation of the performance of the simulations by appropriate tests, and (iv) evaluation of the statistical model by expert judgment. The study site is the north-facing hillslope of the Barcelonnette Basin (France), affected by several types of landslides and characterized by a complex morphology. Results indicate that bivariate methods are powerful to assess landslide susceptibility at 1:10,000 scale. However, the method is limited from a geomorphological viewpoint when RVs and PVs are complex or poorly informative. It is demonstrated that expert knowledge has still to be introduced in statistical models to produce reliable landslide susceptibility maps
Abstract. The relationships between rainfall, hydrology and landslide movement are often difficult to establish. In this context, ground-water flow analyses and dynamic modelling can help to clarify these complex relations, simulate the landslide hydrological behaviour in real or hypothetical situations, and help to forecast future scenarios based on environmental change. The primary objective of this study is to investigate the possibility of including more temporal and spatial information in landslide hydrology forecasting, by using a physically based spatially distributed model. Results of the hydrological and geomorphological investigation of the Super-Sauze earthflow, one of the persistently active landslide occurring in clay-rich material of the French Alps, are presented. Field surveys, continuous monitoring and interpretation of the data have shown that, in such material, the groundwater level fluctuates on a seasonal time scale, with a strong influence of the unsaturated zone. Therefore a coupled unsaturated/saturated model, incorporating Darcian saturated flow, fissure flow and meltwater flow is needed to adequately represent the landslide hydrology. The conceptual model is implemented in a 2.5-D spatially distributed hydrological model. The model is calibrated and validated on a multi-parameters database acquired on the site since 1997. The complex time-dependent and three-dimensional groundwater regime is well described, in both the short-and longterm. The hydrological model is used to forecast the future hydrological behaviour of the earthflow in response to potential environmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.