Ti–6Al–4V and stainless steel 316L have been processed by selective laser melting under similar conditions, and their microstructures and mechanical behaviours have been compared in details. Under the investigated conditions, Ti–6Al–4V exhibits a more complex behaviour than stainless steel 316L with respect to the occurrence of microstructural and mechanical anisotropy. Moreover, Ti–6Al–4V appears more sensitive to the build-up of internal stresses when compared with stainless steel 316L, whereas stainless steel 316L appears more prone to the formation of ‘lack of melting’ defects. This correlates nicely with the difference in thermal conductivity between the two materials. Thermal conductivity was shown to increase strongly with increasing temperature and the thermophysical properties appeared to be influenced by variations in the initial metallurgical state.
In this study, samples of stainless steel AISI 316L have been processed by selective laser melting, a layer-by-layer near-net-shape process allowing for an economic production of complex parts. The resulting microstructures have been characterised in details in order to reach a better understanding of the solidification and consolidation processes. The influence of the processing parameters on the mechanical properties was investigated by means of uniaxial tensile testing performed on samples produced with different main orientations with respect to the building direction. A strong anisotropy of the mechanical behaviour was thus interpreted in relation with the microstructures and the processing conditions.
Gaseous PhotoMultipliers (GPM) are a very promising alternative of vacuum PMTs especially for large-size noble-liquid detectors in the field of Functional Nuclear Medical Imaging and Direct Dark Matter Detection. We present recent characterization results of a Hybrid-GPM made of three Micropattern Gaseous Structures; a Thick Gaseous Electron Multiplier (THGEM), a Parallel Ionization Multiplier (PIM) and a MICROMesh GAseous Structure (MICROMEGAS), operating in Ne/CF 4 (90:10). Gain values close to 10 7 were recorded in this mixture, with 5.9keV x-rays at 1100 mbar, both at room temperature and at that of liquid xenon (T = 171K). The results are discussed in term of scintillation detection. While the present multiplier was investigated without photocathode, complementary results of photoextraction from CsI UVphotocathodes are presented in Ne/CH 4 (95:5) and CH 4 in cryogenic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.