Considerable progress has been made in identifying the molecular composition of complex signaling networks controlling cell proliferation, differentiation, and survival. However, to discover general building principles and predict the dynamic behavior of signaling networks, it is necessary to develop quantitative models based on experimental observations. Here we report a mathematical model of the core module of the Janus family of kinases (JAK)-signal transducer and activator of transcription (STAT) signaling pathway based on time-resolved measurements of receptor and STAT5 phosphorylation. Applying the fitted model, we can determine the quantitative behavior of STAT5 populations not accessible to experimental measurement. By in silico investigations, we identify the parameters of nuclear shuttling as the most sensitive to perturbations and verify experimentally the model prediction that inhibition of nuclear export results in a reduced transcriptional yield. The model reveals that STAT5 undergoes rapid nucleocytoplasmic cycles, continuously coupling receptor activation and target gene transcription, thereby forming a remote sensor between nucleus and receptor. Thus, dynamic modeling of signaling pathways can promote functional understanding at the systems level.
This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus-endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus-endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-t (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus-endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.
Purulent disease of the uterus develops in 40% of dairy cows after parturition, when the epithelium of the endometrium is disrupted to expose the underlying stroma to bacteria. The severity of endometrial pathology is associated with isolation of Trueperella pyogenes. In the present study, T. pyogenes alone caused uterine disease when infused into the uterus of cattle where the endometrial epithelium was disrupted. The bacterium secretes a cholesterol-dependent cytolysin, pyolysin (PLO), and the plo gene was identical and the plo gene promoter was highly similar amongst 12 clinical isolates of T. pyogenes. Bacteria-free filtrates of the T. pyogenes cultures caused hemolysis and endometrial cytolysis, and PLO was the main cytolytic agent, because addition of anti-PLO antibody prevented cytolysis. Similarly, a plo-deletion T. pyogenes mutant did not cause hemolysis or endometrial cytolysis. Endometrial stromal cells were notably more sensitive to PLO-mediated cytolysis than epithelial or immune cells. Stromal cells also contained more cholesterol than epithelial cells, and reducing stromal cell cholesterol content using cyclodextrins protected against PLO. Although T. pyogenes or plo-deletion T. pyogenes stimulated accumulation of inflammatory mediators, such as IL-1beta, IL-6, and IL-8, from endometrium, PLO did not stimulate inflammatory responses by endometrial or hematopoietic cells, or in vitro organ cultures of endometrium. The marked sensitivity of stromal cells to PLO-mediated cytolysis provides an explanation for how T. pyogenes acts as an opportunistic pathogen to cause pathology of the endometrium once the protective epithelium is lost after parturition.
This study sought to determine the earliest response of the bovine uterine endometrium to the presence of the conceptus at key developmental stages of early pregnancy. There were no detectable differences in gene expression in endometria from pregnant and cyclic heifers on Days 5, 7, and 13 postestrus, but the expression of 764 genes was altered due to the presence of the conceptus at maternal recognition of pregnancy (Day 16). Of these 514 genes, MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD9, EIF4E, and IFIT2 increased to the greatest extent in pregnant endometria (>8-fold log2 fold change increase). The expression of OXTR, Bt.643 (unofficial symbol), and KCNMA1 was reduced the most, but short-term treatment with recombinant ovine interferon tau (IFNT) in vitro or in vivo did not alter their expression. In vivo intrauterine infusion of IFNT induced the expression of EIF4E, IFIT2, IFI44, ISG20, MX2, RSAD2, SAMD9, and USP18. These results revealed for the first time that changes that occur in the endometrial transcriptome are independent of the presence of a conceptus until pregnancy recognition. The differentially expressed genes (including MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD, and EIF4E) are a consequence of IFNT production by the conceptus. The identified genes represent known and novel early markers of conceptus development and/or return to cyclicity and may be useful to identify the earliest stage at which the endometrial response to the conceptus is detectable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.