The synthesis of a Ir(III)-Co(III) dyad with vectorial electron transfer afforded a novel supramolecular system that photocatalytically produces hydrogen in a range extending from the blue region of the spectrum to the red region with higher turnover number and frequency compared to other bimetallic dyads.
Square planar 1, square pyramidal 2 and trigonal bipyramidal 3 copper complexes are poor catalysts for hydrogen evolution (HER) under photocatalytic conditions, whereas 1 is, or forms, a good and enduring electrocatalyst for HER, but 2 and 3 do not.
Seventeen cobalt complexes-eleven dinuclear cobalt(II) complexes and three tetranuclear cobalt complexes (two mixed valent) of ditopic ligands, with varying N-donor aromatic bridging moieties and pendant pyridine side arms, as well as three mononuclear cobalt(II) complexes of Schiff base macrocyclic ligands-have been screened for photocatalytic hydrogen evolution reaction (HER) activity. All 17 complexes are active catalysts for the HER, in both DMF and aqueous solution, in tandem with the [Ru(bpy) ] (bpy=2,2'-bipyridine) photosensitiser. All are benchmarked to the literature standard [Co (dmgH) (py)Cl] (dmg=dimethylglyoxime, py=pyridine) under identical conditions. Two families of dinuclear cobalt(II) complexes of bis-tetradentate ligands that provide a triazole bridging moiety and mononuclear cobalt(II) complexes of tetradentate Schiff base macrocycles were found to be the most active catalysts, outperforming [Co (dmgH) (py)Cl] by two- to three-fold. Within these two families, the use of shorter alkyl linkers between the N donors, and hence, smaller chelate ring sizes, was found to significantly enhance catalytic performance, whereas the variation of peripheral functional groups was found to have little effect. This last point will be convenient for subsequent surface immobilisation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.