Osmoprotectants exogenously supplied to a hyperosmotic culture medium are efficiently imported and amassed by stressed cells of Escherichia coli. In addition to their evident role in the recovery and maintenance of osmotic balance, these solutes should play an important role on the behavior of cellular macromolecules, for example in the process of protein folding. Using a random chemical mutagenesis approach, a conditional lysine auxotrophic mutant was obtained. The growth of this mutant was restored by addition of either lysine or osmoprotectants including glycine betaine (GB) in the minimal medium. The growth rate increased proportionally with the augmentation of the intracellular GB concentration. The mutation was located in the lysA gene and resulted in the substitution of the Ser at position 384 by Phe of the diaminopimelate decarboxylase (DAPDC), which catalyzes the conversion of meso-diaminopimelate to L-lysine. We purified both the wild type DAPDC and the mutated DAPDC-sf and demonstrated that GB was capable of activating DAPDC-sf in vitro, thus confirming the in vivo results. Most importantly, we showed that the activation was correlated with a conformational change of DAPDC-sf. Taken together, these results show, for the first time, that GB may actively assist in vivo protein folding in a chaperone-like manner.Water availability is primordial for life of all organisms. Bacteria submitted to a severe hyperosmotic stress instantaneously lose a large amount of their intracellular water to balance the osmotic strength between intracellular and extracellular spaces. The subsequent decrease of cellular water activity together with the loss of cell turgor lead to lessen the bacterial cell expansion rate (1). Surviving such injuring conditions implies the reversion of water flux across the cell membrane; this can be achieved by amassing highly soluble compounds termed osmolytes (2, 3). Thus, Escherichia coli cells rapidly take up high amounts of potassium ions (4, 5) and subsequently increase their glutamate content to balance electric charges. To avoid the perturbing effect of elevated ionic strength, K ϩ -glutamate can be progressively replaced by organic osmolytes that behave neutral at physiological pH (6). Such compounds, termed compatible solutes (7), may be endogenously synthesized or imported from the surrounding medium (3,8). Imported compatible solutes generally confer a high degree of osmotic tolerance to injured cells. Among these so-called osmoprotectants, glycine betaine (GB) 1 is by far the most effective and the most commonly assayed for hyperosmotic purposes.In addition to the obvious predominant role they play in cellular osmotic adjustment, internalized and accumulated osmoprotectants should directly participate in other intracellular processes. Protective as well as stabilizing effects of betaine and other solutes on proteins denaturation because of increased salinity or temperature have been reported (9 -12). It is tempting to extrapolate these results in vivo; however, bacteria submitte...
Infrared fingerprints of molecules in biology contain much information on cells metabolism allowing one to distinguish between healthy and altered tissues. Here, to collect infrared signatures, we used evanescent wave spectroscopy based on an original infrared transmitting tapered glass fiber. A strict control of the fiber diameter in the tapered sensing zone allows high sensitivity and wide spectral range exploration from 800 to 3000 cm(-1). Then, merely in depositing the mouse liver biopsies on the fiber, this device has enable us to differentiate between tumorous and healthy tissues.
Fourier transform infrared spectroscopy was applied to the study of the differentiation process undergone by Proteus mirabilis. This bacterium exhibits a remarkable dimorphism, allowing the cells to migrate on a solid substratum in a concerted manner yielding characteristic ring patterns. We performed an in situ noninvasive analysis of biochemical events occurring as vegetative cells differentiate into elongated, multinucleate, nonseptate, and hyperflagellated swarm cells. The major findings arising from this study are (i) the real-time monitoring of flagellar filament assembly, (ii) the evidence for de novo synthesis of qualitatively different lipopolysaccharides (LPS) and/or exopolysaccharides (EPS) constituting the slime into which bacteria swarm, and (iii) the alteration in the membrane fatty acid composition with a concomitant 10 degrees C decrease in the gel/liquid crystal phase transition resulting in an elevated membrane fluidity in swarm cells at the growth temperature. The time course of events shows that the EPS-LPS syntheses are synchronous with membrane fatty acid alterations and occur about 1 h before massive flagellar filament assembly is detected. This study not only provided a time sketch of biochemical events involved in the differentiation process but also led to the identification of the major spectral markers of both vegetative and swarm cells. This identification will allow to resolve the time-space structure of P. mirabilis colonies by using infrared microscopy.
We mapped the space-time distribution of stationary and swarmer cells within a growing Proteus mirabilis colony by infrared (IR) microspectroscopy. Colony mapping was performed at different positions between the inoculum and the periphery with a discrete microscope-mounted IR sensor, while continuous monitoring at a fixed location over time used an optical fiber based IR-attenuated total reflection (ATR) sensor, or "optrode." Phenotypes within a single P. mirabilis population relied on identification of functional determinants (producing unique spectral signals) that reflect differences in macromolecular composition associated with cell differentiation. Inner swarm colony domains are spectrally homogeneous, having patterns similar to those produced by the inoculum. Outer domains composed of active swarmer cells exhibit spectra distinguishable at multiple wavelengths dominated by polysaccharides. Our real-time observations agree with and extend earlier reports indicating that motile swarmer cells are restricted to a narrow (approximately 3 mm) annulus at the colony edge. This study thus validates the use of an IR optrode for real-time and noninvasive monitoring of biofilms and other bacterial surface populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.