With the rise of city logistics (CL) problems in the last three decades, various methods, approaches, solutions, and initiatives were analyzed and proposed for making logistics in urban areas more sustainable. The most analyzed and promising solutions are those that take into account cooperation among logistics providers and consolidation of the flow of goods. Furthermore, technological innovations enable the implementation of modern vehicles/equipment in order to make CL solutions sustainable. For several years, drone-based delivery has attracted lots of attention in scientific research, but there is a serious gap in the literature regarding the application of drones in CL concepts. The goal of this paper is to analyze four CL concepts that differ in consolidation type, transformation degree of flow of goods (direct and indirect, multi-echelon flows), and the role of drones. Two of the analyzed concepts are novel, which is the main contribution of the paper. The performances of the analyzed concepts are compared to the performances of the traditional delivery model – using only trucks without prior flow consolidation. The results indicate that CL concepts which combine different consolidation models and drones in the last phase of the delivery could stand out as a sustainable CL solution.
The paper gives special attention on long distance passenger transport and specific emissions related to different transport modes, particularly road and air transport sector. The goal of this research is creation and selection of appropriate methodology for modelling the cost estimation of GHG emissions in road and air transport sector for Republic of Serbia as well as the application of the methodology regarding to detailed calculation by transport mode and sub modes. Input data for road transport sector refer to the 2013 and include road and traffic conditions on the road network. Input data for air transport sector are related to the 2014 and international airport ‘Nikola Tesla’ Belgrade as the main hub point with the highest recorded number of aircraft operations in the Western Balkan countries. The obtained results reveal that, due to realized transport volume, diesel cars have the largest share of the costs of GreenHouse Gas (GHG) emissions within the passenger long distance road transport. Cost estimates of CO2 emissions in the air transport sector shows that A319 aircraft type have the major share in total costs. The reasons are twofold: first, a high level of Landing and Take-Off (LTO) emission factor for CO2 and second, largest number of LTO cycles.
In recent years, there have been many cost-benefit studies on aviation safety, which deal mainly with economic issues, omitting some strictly technical aspects. This study compares aircraft accidents in relation to the characteristics of the aircraft, environmental conditions, route, and traffic type. The study was\ud conducted using a database of over 1500 aircraft accidents worldwide, occurring between 1985 and 2010. The data were processed and then aggregated into groups, using cluster analysis based on an algorithm of partition binary ‘Hard c\ud means.’ For each cluster, the ‘cluster representative’ accident was identified as the average of all the different characteristics of the accident. Moreover, a ‘hazard index’ was defined for each cluster (according to annual movements); using this index, it was possible to establish the dangerousness of each ‘cluster’ in terms of aviation accidents. Obtained results allowed the construction of an easy-to-use predictive model for accidents using multivariate analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.