Background: Renal replacement therapy, either by transplantation or dialysis, is not accessible in many parts of the world because of lack of financial and clinical resources. This study was performed to investigate the nephroprotective efficiency of gum arabic (GA) and lemongrass (LG) on adenine-induced chronic kidney disease. Materials and methods: Four animal groups (each of 10 rats) received normal saline, intraperitoneal injection of adenine (300 mg/kg) twice a week, and adenine plus oral GA (5.4 g/kg) or oral LG (360 mg/kg) daily for 4 weeks. Results: Compared to control group, adenine-injected rats had significantly higher levels of serum urea, creatinine, and uric acid. Moreover, biochemical analysis of kidney homogenate showed that adenine injection was associated with significantly higher levels of malondialdehyde and lower levels of reduced glutathione and antioxidant enzyme activities in comparison with normal control. Additionally, the adenine group exhibited a significant upregulation in tumor necrosis factor-α and downregulation in interleukin-10 gene expression. Histopathological and immunohistochemical examinations of renal tissue from the adenine group showed degeneration to renal glomeruli and renal tubules with increased DNA double-strand breaks. On the other hand, treatment with GA or LG ameliorated all the previous parameters to a large extent. Conclusion: From this study, we concluded that oral administration of GA or LG could conceivably alleviate adverse effects of CKD which might be ascribed to their antioxidant and free radical-scavenging properties.
Background Broilers are continuously stressed because of the rapid growth rate and the environmental issues associated with industrialized poultry production systems, which lead to higher susceptibility for infection with pathogens. It is well known that vitamin E (Vit. E) and selenium (Se) supplementation have protective functions in such stressful conditions. This protocol was to investigate the impact of Vit. E and/or Se on the production performance, some serum biochemistry, and expression of some growth-related gene in the liver tissue of the broilers. The day-old chicks were allotted into four groups according to the supplement; Control group and groups supplemented with Vit. E and/or Se into Vit. E group (100 mg Vit. E/kg diet), Se group (0.3 mg sodium selenite/kg diet), and Vit E + Se group that supplemented with both Vit. E and Se. Results The data of the present experiment showed that dietary inclusion of Vit. E and/or Se significantly (P ≤ 0.05) improved the production parameters without any side effect on the general health status of the broilers, which indicated by normal serum biochemical parameters. Moreover, the treatments positively affected the expression of some genes related to growth performance including growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF1) in the liver tissue of broilers. Conclusion Dietary supplementation of Vit. E and/or Se improved the production parameters and upregulate the growth-related genes without effect on the general health status of the broilers.
Background In contrast to free radicals, the first line of protection is assumed to be vitamin E and selenium. The present protocol was designed to assess the roles of vitamin E and/or a selenium-rich diet that affected the blood iron and copper concentrations, liver tissue antioxidant and lipid peroxidation, and gene expression linked to antioxidants in the liver tissue of broilers. The young birds were classified according to the dietary supplement into four groups; control, vitamin E (100 mg Vitamin/kg diet), selenium (0.3 mg sodium selenite/kg diet), and vitamin E pulse selenium (100 mg vitamin/kg diet with 0.3 mg sodium selenite/kg diet) group. Results The results of this experiment suggested that the addition of vitamin E with selenium in the broiler diet significantly increased (P ≤ 0.05) serum iron when compared with the other groups and serum copper when compared with the vitamin E group. Moreover, the supplements (vitamin E or vitamin E with selenium) positively affected the enzymatic activity of the antioxidant-related enzymes with decreased malondialdehyde (MDA),which represents lipid peroxidation in broiler liver tissue. Moreover, the two supplements significantly upregulated genes expression related to antioxidants. Conclusion Therefore, vitamin E and/or selenium can not only act as exogenous antioxidants to prevent oxidative damage by scavenging free radicals and superoxide, but also act as gene regulators, regulating the expression of endogenous antioxidant enzymes.
Chronic wound healing is a severe problem in veterinary practice, therefore, a new agent for wound healing is recommended. Synthetic oligodeoxynucleotides containing one or more CpG motifs (CpG-ODN) are used to stimulate the immune system and improve skin wound healing. Ten clinically healthy animals were used to estimate and compare the rate of wound healing. The animals were arranged into two groups (five animals each). The estimation of wound healing was carried out by clinical observation of the signs of healing in 21 days, the observation was based on the presence of sepsis and unhealthy granulation tissue formation. Histopathological findings depend on the rate of new vascularization, amount of collagen bundles, epithelial thickness and cellular component. Molecular assessment based on the expression of IL10 & TGFβ. This study aimed to evaluate the role of Class C CpG oligonucleotide as new modality to overcome the delay of chronic wound healing in canine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.