Products derived from Cannabis sativa L. have gained increased interest and popularity. As these products become common amongst the public, the health and potential therapeutic values associated with hemp have become a premier focus of research. While the psychoactive and medicinal properties of Cannabis products have been extensively highlighted in the literature, the antibacterial properties of cannabidiol (CBD) have not been explored in depth. This research serves to examine the antibacterial potential of CBD against Salmonella newington and S. typhimurium. In this study, we observed bacterial response to CBD exposure through biological assays, bacterial kinetics, and fluorescence microscopy. Additionally, comparative studies between CBD and ampicillin were conducted against S. typhimurium and S. newington to determine comparative efficacy. Furthermore, we observed potential resistance development of our Salmonella spp. against CBD treatment.
The gut microbiome is a collection of microorganisms and parasites in the gastrointestinal tract. Many factors can affect this community’s composition, such as age, sex, diet, medications, and environmental triggers. The relationship between the human host and the gut microbiota is crucial for the organism’s survival and development, whereas the disruption of this relationship can lead to various inflammatory diseases. Cannabidiol (CBD) and tetrahydrocannabinol (THC) are used to treat muscle spasticity associated with multiple sclerosis. It is now clear that these compounds also benefit patients with neuroinflammation. CBD and THC are used in the treatment of inflammation. The gut is a significant source of nutrients, including vitamins B and K, which are gut microbiota products. While these vitamins play a crucial role in brain and bone development and function, the influence of gut microbiota on the gut-brain and gut-bone axes extends further and continues to receive increasing scientific scrutiny. The gut microbiota has been demonstrated to be vital for optimal brain functions and stress suppression. Additionally, several studies have revealed the role of gut microbiota in developing and maintaining skeletal integrity and bone mineral density. It can also influence the development and maintenance of bone matrix. The presence of the gut microbiota can influence the actions of specific T regulatory cells, which can lead to the development of bone formation and proliferation. In addition, its metabolites can prevent bone loss. The gut microbiota can help maintain the bone’s equilibrium and prevent the development of metabolic diseases, such as osteoporosis. In this review, the dual functions gut microbiota plays in regulating the gut-bone axis and gut-brain axis and the impact of CBD on these roles are discussed.
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as “human friends”, thus fulfilling the adage that “the enemy of my enemy is my friend”. Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tailspike protein to cause bacteria membrane disruption, and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption, and dehydrogenase inactivation by the protein. The results of this work provides an interesting background to highlight the crucial role phage protein such as E34 TSP could play in pathogenic bacterial control.
Corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), has emerged as an injurious insect pest to hemp, Cannabis sativa L., a crop newly reintroduced to the United States. Growing hemp presents a potential alternative economic opportunity for farmers but can be challenging with a market that is unstable and just developing. One of the most notable production challenges is managing corn earworm, an insect pest that is particularly damaging when it feeds on flower buds produced in cannabinoid varieties, creating extensive bud tunneling and wounds that allow entry of pathogens that can aid development and presence of bud rot. Damage to seeds is of lesser concern in hemp cultivars grown for grain and minimal risk is associated with hemp grown for fiber. Our ability to research hemp has only recently been allowed as production was largely suspended following World War II and, as such, there has been limited opportunity to develop information for empirically-based pest management recommendations. Further complicating development of integrated pest management (IPM) strategies are regulatory challenges associated with providing registration support to add hemp to pesticide labels, as it was not formally recognized as a crop by U.S. regulatory agencies until late 2019. Research needs and challenges to develop effective IPM programs for corn earworm on hemp are discussed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.