DC motor as an electric machine have been applied in numerous control systems. However, a critical parameter of interest that must be evaluated in designing a DC motor based system is the damping constant of the rotor. This paper analytically examines how to determine the damping constant of the rotor of a 12V DC motor, with the determination based on the following parameters: Armature resistance (R a), inductance (La), Capacitance, the Stall current and the Angular rate of excitation of the motor with varying armature excitation of the current. These parameters help to ascertain the maximum and the minimum operating limit of the motor so as not to exceed the boundary-operating limits of the 12V motor. Experiments were performed in the laboratory and at the end of the analysis, the result shows that the value of damping constant of a 12V DC motor was-3.317 10-4 N-m-sec 2. This parameter can be factored in future control system designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.