<span>Iris image segmentation process based on graphical user interface (GUI) to accurately localize the iris structure is presented in this paper. The major challenge confronting the precision of an iris recognition model is how to determine the accuracy of the iris segmentation and localization. There are varying parameters that introduce constraints during feature extraction and these greatly affect the matching performance during iris localization. To this end, the Integro-differential operator, which involves the detection of inner and outer regions of the iris, and the circular hough transform, which is capable of detecting the circular boundary from the edge mapping were investigated, and an active contour model was evolved. In the evolved model, an emerging curve mapped with the zeros of the data set function is experimentally exploited. To demonstrate the suitability of the model for precise iris recognition, its parameters were compared against other related models. Simulation results show that the model has higher flexibility of substitution of images, and the images could be analyzed more accurately with less false rejections (FR) and false acceptance (FA) in comparison with the integro-differential operator. This implies that images could be analyzed faster using the evolved model, and easily substituted especially in situations where the need to care for numerous eye patients occur.</span>
This study presents building pentration loss into and around multi-storey buildings at 900 and 1800MHz based on experimental data obtained through drive test, using Test Mobile System (TEMS) investigation tools. The received signal level was measured inside and outside three buildings; the Senate building of the University of Lagos (B1), Mike Adenuga Towers (B2) and the Sapetro Towers (B3) located in Victoria Island, Lagos Nigeria. The building penetration loss (BPL) was derived from measurements, and the average and standard deviations of the BPL were computed. Results showed that the average BPL of 17.0dB and 13.8dB obtained from building B1 at 900 and 1800MHz, respectively, are comparatively higher than those of buildings B2 and B3. The standard deviation of the BPL shows an increase from 5.2dB at 900MHz to 7.8dB at 1800MHz for building B1, whereas it fell drastically from 8.65dB at 900MHz to 1.40dB at 1800MHz for B2, and a similar behaviour as in B1 is seen for building B3, where it rises sharply from 1.55dB at 900MHz to 6.55dB at 1800MHz. This is in agreement with the general trend of increasing penetration loss with increase in frequency except for building B2 where an anomaly is observed. In order to examine the correlation between the measured and the predicted BPL, cubic regression was used to fit a third order polynomial to the measured BPL. Overrall, the fitted models could find useful applications in the design of novel and robust BPL models for modern multi-floored buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.