Globally, the irrigation of crops is the largest consumptive user of fresh water. Water scarcity is increasing worldwide, resulting in tighter regulation of its use for agriculture. This necessitates the development of irrigation practices that are more efficient in the use of water but do not compromise crop quality and yield. Precision irrigation already achieves this goal, in part. The goal of precision irrigation is to accurately supply the crop water need in a timely manner and as spatially uniformly as possible. However, to maximize the benefits of precision irrigation, additional technologies need to be enabled and incorporated into agriculture. This paper discusses how incorporating adaptive decision support systems into precision irrigation management will enable significant advances in increasing the efficiency of current irrigation approaches. From the literature review, it is found that precision irrigation can be applied in achieving the environmental goals related to sustainability. The demonstrated economic benefits of precision irrigation in field-scale crop production is however minimal. It is argued that a proper combination of soil, plant and weather sensors providing real-time data to an adaptive decision support system provides an innovative platform for improving sustainability in irrigated agriculture. The review also shows that adaptive decision support systems based on model predictive control are able to adequately account for the time-varying nature of the soil-plant-atmosphere system while considering operational limitations and agronomic objectives in arriving at optimal irrigation decisions. It is concluded that significant improvements in crop yield and water savings can be achieved by incorporating model predictive control into precision irrigation decision support tools. Further improvements in water savings can also be realized by including deficit irrigation as part of the overall irrigation management strategy. Nevertheless, future research is needed for identifying crop response to regulated water deficits, developing improved soil moisture and plant sensors, and developing self-learning crop simulation frameworks that can be applied to evaluate adaptive decision support strategies related to irrigation.
Sustainable freshwater management is underpinned by technologies which improve the efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to incorporate real-time feedback from soil moisture and climatic sensors. However, for robust closed-loop decision support, models of the soil moisture dynamics are essential in order to predict crop water needs while adapting to external perturbation and disturbances. This paper presents a Dynamic Neural Network approach for modelling of the temporal soil moisture fluxes. The models are trained to generate a one-day-ahead prediction of the volumetric soil moisture content based on past soil moisture, precipitation, and climatic measurements. Using field data from three sites, a R2 value above 0.94 was obtained during model evaluation in all sites. The models were also able to generate robust soil moisture predictions for independent sites which were not used in training the models. The application of the Dynamic Neural Network models in a predictive irrigation scheduling system was demonstrated using AQUACROP simulations of the potato-growing season. The predictive irrigation scheduling system was evaluated against a rule-based system that applies irrigation based on predefined thresholds. Results indicate that the predictive system achieves a water saving ranging between 20 and 46% while realizing a yield and water use efficiency similar to that of the rule-based system.
The crop water stress index (CWSI) has been shown to be a tool that could be used for non-contact and real-time monitoring of plant water status, which is a key requirement for the precision irrigation management of crops. However, its adoption for irrigation scheduling is limited because of the need to know the baseline temperatures which are required for its calculation. In this study, the canopy temperature of greenhouse cultivated lettuce plants which were maintained as either well-watered or non-transpiring was continuously monitored along with prevailing environmental conditions during a five week period. This data was applied in developing a dynamic model that can be used for predicting the baseline temperatures. Input variables for the dynamic model included air temperature, shortwave irradiance, and air vapour pressure deficit measured at a 10 s interval. During a follow up study, the dynamic model successfully predicted the baseline temperatures producing mean absolute errors (MAE) that varied between 0.17°C and 0.29°C, and root mean squared errors (RMSE) that varied between 0.21°C and 0.35°C when comparing model predictions with measured values. The model predicted baseline temperatures were applied in calculating an empirical CWSI for lettuce plants receiving one of two irrigation treatments. The empirical CWSI consistently differentiated between the irrigation treatments and was significantly correlated with the theoretical CWSI with correlation coefficient (r) values greater than 0.9. The dynamic model presented in this study requires easily measured input parameters for the prediction of the baseline temperatures. This eliminates the need to maintain artificial reference surfaces required in other empirical approaches for the CWSI calculation and also eliminates the need for computing the complex theoretical CWSI.
Real-time information on the plant water status is an important prerequisite for the precision irrigation management of crops. The plant transpiration has been shown to provide a good indication of its water status. In this paper, a novel plant water status monitoring framework based on the transpiration dynamics of greenhouse grown lettuce plants is presented. Experimental results indicated that lettuce plants experiencing adequate water supply transpired at a higher rate compared to plants experiencing a shortage in water supply. A data-driven model for predicting the transpiration dynamics of the plants was developed using a system identification approach. Results indicated that a second order discrete-time transfer function model with incoming radiation, vapour pressure deficit, and leaf area index as inputs sufficiently explained the dynamics with an average coefficient of determination of 2 = 0.93 ± 0.04. The parameters of the model were updated online and then applied in predicting the transpiration dynamics of the plants in real-time. The model predicted dynamics closely matched the measured values when the plants were in a predefined water status state. The reverse was the case when there was a significant change in the water status state. The information contained in the model residuals (measured transpirationmodel predicted transpiration) was then exploited as a means of inferring the plant water status. This framework provides a simple and intuitive means of monitoring the plant water status in real-time while achieving a sensitivity similar to that of stomatal conductance measurements. It can be applied in regulating the water deficit of greenhouse grown crops, with specific advantages over other available techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.