Large-area (~cm 2 ) films of vertical heterostructures formed by alternating graphene and transition-metal dichalcogenide (TMD) alloys are obtained by wet chemical routes followed by a thermal treatment at low temperature. In particular, we synthesized stacked graphene and WxMo1-xS2 alloy phases that were used as hydrogen evolution catalysts. We observed a Tafel slope of 38.7 mV dec -1 and 96 mV onset potential (at current density of 10 mA cm -2 ) when the heterostructure alloy was annealed at 300 o C. These results indicate that heterostructures formed by graphene and W0.4Mo0.6S2 alloys are far more efficient than WS2 and MoS2 by at least a factor of two, and they are superior than other reported TMD systems. This strategy offers a cheap and low temperature synthesis alternative able to replace Pt in the hydrogen evolution reaction (HER). Furthermore, the catalytic activity of the alloy is stable over time,i.e. the catalytic activity does not experience a significant change even after 1000 cycles. Using density functional theory calculations, we found that this enhanced hydrogen evolution in the 4 WxMo1-xS2 alloys is mainly due to the lower energy barrier created by a favorable overlap of the d-orbitals from the transition metals and the s-orbitals of H2; with the lowest energy barrier occurring for the W0.4Mo0.6S2 alloy. Thus, it is now possible to further improve the performance of the "inert" TMD basal plane via metal alloying, in addition to the previously reported strategies such as creation of point defects, vacancies and edges. The synthesis of graphene/W0.4Mo0.6S2 produced at relatively low temperatures is scalable and could be used as an effective low cost Pt-free catalyst.5
A combined theoretical and experimental investigation into the structure and mechanism of the classical Vandenberg catalyst for the isoselective polymerization of epoxides has led to a consistent mechanistic proposal. The most likely reaction pathway was based on a bis(μ-oxo)di(aluminum) (BOD) resting state that proceeded through a mono(μoxo)di(aluminum) (MOD) transition state. The isoselectivity of the Vandenberg catalyst was derived from the rigidity of the BOD structure and its bonding to the ultimate and penultimate oxygen heteroatoms along the polyether backbone. The energetic driving force for isoselectivity was the loss of an energetically favorable secondary Al−O interaction during enchainment of oppositely configured epoxides, providing a ca. 2 kcal/mol driving force for the emergent isoselectivity. Experimental spectroscopic and kinetic evidence based on model BOD and MOD complexes support the new mechanistic framework developed using density functional theory calculations. A purposefully synthesized BOD analogue of the proposed Vandenberg structure produced a characteristically isotactically enriched poly(allyl glycidyl ether) as produced by the classical Vandenberg catalyst. In situ 1 H NMR spectroscopy of a Vandenberg-catalyzed polymerization of allyl glycidyl ether revealed the activation enthalpy (ΔH ‡ = 21 kcal/mol) and energetics of epoxide−aluminum coordination (ΔH = −4.0 ± 1.0 kcal/mol, ΔS = −0.018 ± 0.004 kcal/(K mol)) by observation of the shifting acetylacetonate signal located on the active site of the Vandenberg catalyst in the 1 H NMR spectra of polymerization.
Commodity PS is synthesized via free radical polymerization, whereas PS in block copolymers (BCPs) is typically synthesized via living anionic polymerization. The purpose of this work is to investigate how the synthesis method impacts important properties such as water sorption and glass transition temperature (Tg). Water sorption is important because the performance of nanostructured polymer membranes in various applications is known to be affected by environmental conditions such as humidity. Tg is important because it dictates processing conditions, both for commodity PS as well as BCPs such as thermoplastic elastomers. Water sorption in commercial PS was found to be 0.5 mgwater/gpolymer at the highest humidities investigated (about 80%), in agreement with literature. On the other hand, syndiotactic PS synthesized anionically at low temperature absorbed more water, up to 1.5 mgwater/gpolymer, due to higher free volume. The greatest impact on water sorption was due to addition of hydrophilic hydroxyl chain ends to atactic PS, which resulted in water sorption of up to 2.3 mgwater/gpolymer. In addition to measuring water sorption and dry Tg separately, the impact of relative humidity on PS Tg was examined. Combined differential scanning calorimetry and dynamic mechanical analysis show that on going from the dry state to high humidity, the Tg of PS decreases by 5 °C. Moreover, the tensile storage modulus of PS decreases from 1.58 GPa at 0% RH to 0.53 GPa at 40% RH. In addition to the practical relevance of this study, this report fills a gap in experimental literature by using a poor solvent system, PS/water, to examine plasticization in the pure polymer limit.
Block copolymer (BCP) structure and dynamics were studied using small-angle neutron scattering (SANS), neutron spin echo (NSE) spectroscopy, and molecular dynamics (MD) simulations to obtain a fundamental understanding of the impact of an interfacial block on chain dynamics. A glassy block acted as the interface, and the dynamics of a rubbery block was studied. The rubbery block was protonated near the interface in one sample and near the chain end in another sample to observe the interfacial effect on the rubbery polymer. Analysis of the structure and dynamics revealed that the interfacial rubbery block was confined in layered morphologies and exhibited much slower dynamics than the chain-end rubbery block that was dispersed in the rubbery matrix. The interfacial rubbery block showed weaker dynamical relaxation than that at the chain end, and it also had critically important length scale dependence. Dynamical slowing was only observed at length scales significantly larger than the characteristic segmental length, and the disparity between interfacial and chain-end dynamics increased with increasing length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.