Objective
The application of wearable devices in individuals with acquired brain injury (ABI) resulting from stroke or traumatic brain injury (TBI) for monitoring physical activity (PA) has been relatively recent. The current systematic review aims to provide insights into the adaption of these devices, the outcome metrics, and their transition from the laboratory to the community for PA monitoring of individuals with ABI.
Literature Survey
The PubMed and Google Scholar databases were systematically reviewed using appropriate search terms. A total of 20 articles were reviewed from the last 15 years.
Methodology
Articles were classified into three categories: PA measurement studies, PA classification studies, and validation studies. The quality of studies was assessed using a quality appraisal checklist.
Synthesis
It was found that the transition of wearable devices from in‐lab to community‐based studies in individuals with stroke has started but is not widespread. The transition of wearable devices in the community has not yet started for individuals with TBI. Accelerometer‐based devices were more frequently chosen than pedometers and inertial measurement units. No consensus on a preferred wearable device (make or model) or wear location could be identified, although step count was the most common outcome metric. The accuracy and validity of most outcome metrics used in the community were not reported for many studies.
Conclusions
To facilitate future studies using wearable devices for PA measurement in the community, we recommend that researchers provide details on the accuracy and validity of the outcome metrics specific to the study environment. Once the accuracy and validity are established for a specific population, wearable devices and their derived outcomes can provide objective information on mobility impairment as well as the effect of rehabilitation in the community.
There is limited research on sensory acuity i.e., ability to perceive external perturbations via body-sway during standing in individuals with a traumatic brain injury (TBI). It is unclear whether sensory acuity diminishes after a TBI and if it is a contributing factor to balance dysfunction. The objective of this investigation is to first objectively quantify the sensory acuity in terms of perturbation perception threshold (PPT) and determine if it is related to functional outcomes of static and dynamic balance. Ten individuals with chronic TBI and 11 age-matched healthy controls (HC) performed PPT assessments at 0.33, 0.5, and 1 Hz horizontal perturbations to the base of support in the anteriorposterior direction, and a battery of functional assessments of static and dynamic balance and mobility [Berg balance scale (BBS), timed-up and go (TUG) and 5-m (5MWT) and 10-m walk test (10MWT)]. A psychophysical approach based on Single Interval Adjustment Matrix Protocol (SIAM), i.e., a yes-no task, was used to quantify the multi-sensory thresholds of perceived external perturbations to calculate PPT. A mixeddesign analysis of variance (ANOVA) and post-hoc analyses were performed using independent and paired t-tests to evaluate within and between-group differences. Pearson correlation was computed to determine the relationship between the PPT and functional measures. The PPT values were significantly higher for the TBI group (0.33 Hz: 2.97 ± 1.0, 0.5 Hz: 2.39 ± 0.7, 1 Hz: 1.22 ± 0.4) compared to the HC group (0.33 Hz: 1.03 ± 0.6, 0.5 Hz: 0.89 ± 0.4, 1 Hz: 0.42 ± 0.2) for all three perturbation frequencies (p < 0.006 post Bonferroni correction). For the TBI group, the PPT for 1 Hz perturbations showed significant correlation with the functional measures of balance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.