We present a new method for quantitative visualization of premalignant oral epithelium called scattering attenuation microscopy (SAM). Using low-coherence interferometry, SAM projects measurements of epithelial optical attenuation onto an image of the tissue surface as a color map. The measured attenuation is dominated by optical scattering that provides a metric of the severity of oral epithelial dysplasia (OED). Scattering is sensitive to the changes in size and distribution of nuclear material that are characteristic of OED, a condition recognized by the occurrence of basal-cell-like features throughout the epithelial depth. SAM measures the axial intensity change of light backscattered from epithelial tissue. Scattering measurements are obtained from sequential axial scans of a 3-D tissue volume and displayed as a 2-D SAM image. A novel segmentation method is used to confine scattering measurement to epithelial tissue. This is applied to oral biopsy samples obtained from 19 patients. Our results show that imaging of tissue scattering can be used to discriminate between different dysplastic severities and furthermore presents a powerful tool for identifying the most representative tissue site for biopsy.
Background Salivary gland tumours (SGT) are a relatively rare group of neoplasms with a wide range of histopathological appearance and clinical features. To date, most of the epidemiological studies on salivary gland tumours are limited for a variety of reason including being out of date, extrapolated from either a single centre or country studies, or investigating either major or minor glands only. Methods This study aimed to mitigate these shortcomings by analysing epidemiological data including demographic, anatomical location and histological diagnoses of SGT from multiple centres across the world. The analysed data included age, gender, location and histological diagnosis from fifteen centres covering the majority of the world health organisation (WHO) geographical regions between 2006 and 2019. Results A total of 5739 cases were analysed including 65% benign and 35% malignant tumours. A slight female predilection (54%) and peak incidence between the fourth and seventh decade for both benign and malignant tumours was observed. The majority (68%) of the SGT presented in major and 32% in the minor glands. The parotid gland was the most common location (70%) for benign and minor glands (47%) for malignant tumours. Pleomorphic adenoma (70%), and Warthin’s tumour (17%), were the most common benign tumours whereas mucoepidermoid carcinoma (26%) and adenoid cystic carcinoma (17%) were the most frequent malignant tumours. Conclusions This multicentre investigation presents the largest cohort study to date analysing salivary gland tumour data from tertiary centres scattered across the globe. These findings should serve as a baseline for future studies evaluating the epidemiological landscape of these tumours.
Selecting the most representative site for biopsy is crucial in establishing a definitive diagnosis of oral epithelial dysplasia. The current process involves clinical examination that can be subjective and prone to sampling errors. The aim of this study was therefore to investigate the use of optical coherence tomography (OCT) for differentiation of normal and dysplastic oral epithelial samples, with a view to developing an objective and reproducible approach for biopsy site selection. Biopsy samples from patients with fibro-epithelial polyps (n=13), mild dysplasia (n=2), and moderate/severe dysplasia (n=4) were scanned at 5-μm intervals using an OCT microscope and subsequently processed and stained with hematoxylin and eosin (H&E). Epithelial differentiation was measured from the rate of change (gradient) of the backscattered light intensity in the OCT signal as a function of depth. This parameter is directly related to the density of optical scattering from the cell nuclei. OCT images of normal oral epithelium showed a clear delineation of the mucosal layers observed in the matching histology. However, OCT images of oral dysplasia did not clearly identify the individual mucosal layers because of the increased density of abnormal cell nuclei, which impeded light penetration. Quantitative analysis on 2D-OCT and histology images differentiated dysplasia from normal control samples. Similar analysis on 3D-OCT datasets resulted in the reclassification of biopsy samples into the normal/mild and moderate/severe groups. Quantitative differentiation of normal and dysplastic lesions using OCT offers a non-invasive objective approach for localizing the most representative site to biopsy, particularly in oral lesions with similar clinical features.
The decision of selecting the most representative site for the biopsy of fluid-filled lesions can be difficult. This may be attributed to the poor delineation of the correct lesional site by clinical observation alone. In this study, optical coherence tomography is used to quantify the contrast between solid- and fluid-filled lesions by measuring the light intensity change at the tissue-fluid interface (intensity drop). This parameter was measured from sequential axial scans (n ≈ 10(6) per sample) of 3D optical coherence tomography (OCT) datasets from control tissues (n = 14) and fluid-filled lesions (n = 7) and displayed as a 2D-scaled intensity drop (SID) image. The results of the SID image allowed for discrimination, characterisation and extent of a fluid filled region. The differentiation of normal and fluid-filled areas using individual SID values yielded both a sensitivity and specificity of approximately 80 %. OCT complemented by SID analysis provides a potential in vivo clinical tool that would enable non-invasive objective visualisation of the oral mucosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.