Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties' evolution trends related to the fluorination of their conjugated backbone.
Diketopyrrolopyrrole (DPP) derivatives are among the most efficient materials studied for both polymer solar cells (PSCs) and organic field-effect transistors (OFETs) applications. We report here the synthesis of new fluorinated dithienyldiketopyrrolopyrrole (fDT-DPP) monomers suitable for direct heteroarylation polymerization. fDT-DPP copolymers were then prepared to probe the effect of the fluorination. It was found that they feature deeper HOMO energy levels and smaller bandgaps than their non-fluorinated analogues. Moreover, some fDT-DPP copolymers show ambipolar behavior when tested in OFETs. For example, P2 shows hole mobility up to 0.8 cm 2 V −1 s −1 and electron mobility up to 0.5 cm 2 V −1 s −1 . Inverted PSCs with power conversion efficiency (PCE) up to 7.5% were also obtained for P5. These results reported here (OFETs and PSCs) confirm that the fluorination of dithienyl-DPP moieties improves the performance of organic electronics devices. This study is also evidencing the strength of the direct heteroarylation polymerization and fDT-DPP as a new class of conjugated polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.