The Type-II solar radio burst recorded on 13 June 2010 by the radio spectrograph of the Hiraiso Solar Observatory was employed to estimate the magnetic-field strength in the solar corona. The burst was characterized by a well pronounced band-splitting, which we used to estimate the density jump at the shock and Alfvén Mach number using the Rankine-Hugoniot relations. The plasma frequency of the Type-II bursts is converted into height [R] in solar radii using the appropriate density model, then we estimated the shock speed [V s ], coronal Alfvén velocity [V a ],and the magnetic-field strength at different heights. The relative bandwidth of the band-split is found to be in the range 0.2 -0.25, corresponding to the density jump of X = 1.44 -1.56, and the Alfvén Mach number of M A = 1.35 -1.45. The inferred mean shock speed was on the order of V ≈ 667 km s -1 . From the dependencies V(R) and M A (R) we found that Alfvén speed slightly decreases at R ≈ 1.3 -1.5. The magnetic-field strength decreases from a value between 2.7 and 1.7 G at R ≈ 1.3 -1.5 R ʘ depending on the coronal-density model employed. We find that our results are in good agreement with the empirical scaling by Dulk and McLean (Solar Phys. 57, 279, 1978) and Gopalswamy et al. (Astrophys. J. 744, 72, 2012). Our result shows that Type-II band splitting method is an important tool for inferring the coronal magnetic field, especially when independent measurements were made from white light observations.
Chest wall retraction was found to be the most sensitive indicator, and cyanosis was the most specific indicator for hypoxemia. Of all the clinical signs and symptoms of hypoxemia, none had all the attributes of being a good predictor. A new hypoxemia score has been designed using a combination of clinical signs and symptoms to predict the need for supplemental oxygen therapy.
Abstract. In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable separable method. Numerical results depicting the effects of various embedded parameters like radiation number, Hartmann number and Grashof number on dusty fluid velocity profiles, temperature profiles, Nusselt number and skin friction coefficient are presented graphically and discussed qualitatively.
An analytical study of effect of heat source on MHD blood flow through bifurcated arteries has been done. The blood flowing through arteries is treated to be unsteady Newtonian flow. The coupled linear partial differential equations are solved by converting into ordinary linear differential equations by choosing the axial velocity, normal velocity and temperature field as a functions of y and t along with corresponding boundary conditions. The expressions are obtained for axial velocity, normal velocity and temperature field. The effects of various parameters like Prandtl Number (Pr), Heat Source Parameter (S) and Magnetic Field (M) on axial velocity, normal velocity and temperature field are investigated. It was found that heat source and magnetic field modify the flow patterns and increase the temperature of the blood
Statistical analysis of the relationship between type II radio bursts appearing in the metric (m) and decameter-to-hectometer (DH) wavelength ranges is presented. The associated X-ray flares and coronal mass ejections (CMEs) are also reported. The sample is divided into two classes using the frequency-drift plots: Class I, representing those events where DH-type-II bursts are not continuation of m-type-II bursts and Class II, where the DH-type-II bursts are extensions of m-type-II bursts. Our study consists of three steps: i) comparison of characteristics of the Class I and II events; ii) correlation of m-type-II and DH-type-II burst characteristics with X-ray flare properties and iii) correlation of m-type-II and DH-type-II burst characteristics with CME properties. We have found no clear correlation between properties of m-type-II bursts and DH-type-II bursts. For example, there is no correlation between drift rates of m-type-II bursts and DH-type-II bursts. Similarly there is no correlation between their starting frequencies. In Class I events we found correlations between X-ray flare characteristics and properties of m-type-II bursts and there is no correlation between flare parameters and DH-type-II bursts. On the other hand, the correlation between CME parameters and m-type-II bursts is very weak, but it is good for CME parameters and DH-type-II bursts. These results indicate that Class I m-type-II bursts are related to the energy releases in flares, whereas DH-type-II bursts tend to be related to CMEs. On the contrary, for Class II events in the case of m-type-II and DH-type-II bursts we have found no clear correlation between both flare and CMEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.